korsygfhrtzangaiide
Elepffwdsff
/
usr
/
share
/
doc
/
python-docs-2.7.5
/
html
/
whatsnew
/
Upload FileeE
HOME
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>What’s New in Python 2.1 — Python 2.7.5 documentation</title> <link rel="stylesheet" href="../_static/default.css" type="text/css" /> <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> <script type="text/javascript"> var DOCUMENTATION_OPTIONS = { URL_ROOT: '../', VERSION: '2.7.5', COLLAPSE_INDEX: false, FILE_SUFFIX: '.html', HAS_SOURCE: true }; </script> <script type="text/javascript" src="../_static/jquery.js"></script> <script type="text/javascript" src="../_static/underscore.js"></script> <script type="text/javascript" src="../_static/doctools.js"></script> <script type="text/javascript" src="../_static/sidebar.js"></script> <link rel="search" type="application/opensearchdescription+xml" title="Search within Python 2.7.5 documentation" href="../_static/opensearch.xml"/> <link rel="author" title="About these documents" href="../about.html" /> <link rel="copyright" title="Copyright" href="../copyright.html" /> <link rel="top" title="Python 2.7.5 documentation" href="../index.html" /> <link rel="up" title="What’s New in Python" href="index.html" /> <link rel="next" title="What’s New in Python 2.0" href="2.0.html" /> <link rel="prev" title="What’s New in Python 2.2" href="2.2.html" /> <link rel="shortcut icon" type="image/png" href="../_static/py.png" /> <script type="text/javascript" src="../_static/copybutton.js"></script> </head> <body> <div class="related"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="../genindex.html" title="General Index" accesskey="I">index</a></li> <li class="right" > <a href="../py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="right" > <a href="2.0.html" title="What’s New in Python 2.0" accesskey="N">next</a> |</li> <li class="right" > <a href="2.2.html" title="What’s New in Python 2.2" accesskey="P">previous</a> |</li> <li><img src="../_static/py.png" alt="" style="vertical-align: middle; margin-top: -1px"/></li> <li><a href="http://www.python.org/">Python</a> »</li> <li> <a href="../index.html">Python 2.7.5 documentation</a> » </li> <li><a href="index.html" accesskey="U">What’s New in Python</a> »</li> </ul> </div> <div class="document"> <div class="documentwrapper"> <div class="bodywrapper"> <div class="body"> <div class="section" id="what-s-new-in-python-2-1"> <h1>What’s New in Python 2.1<a class="headerlink" href="#what-s-new-in-python-2-1" title="Permalink to this headline">¶</a></h1> <table class="docutils field-list" frame="void" rules="none"> <col class="field-name" /> <col class="field-body" /> <tbody valign="top"> <tr class="field-odd field"><th class="field-name">Author:</th><td class="field-body">A.M. Kuchling</td> </tr> </tbody> </table> <div class="section" id="introduction"> <h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h2> <p>This article explains the new features in Python 2.1. While there aren’t as many changes in 2.1 as there were in Python 2.0, there are still some pleasant surprises in store. 2.1 is the first release to be steered through the use of Python Enhancement Proposals, or PEPs, so most of the sizable changes have accompanying PEPs that provide more complete documentation and a design rationale for the change. This article doesn’t attempt to document the new features completely, but simply provides an overview of the new features for Python programmers. Refer to the Python 2.1 documentation, or to the specific PEP, for more details about any new feature that particularly interests you.</p> <p>One recent goal of the Python development team has been to accelerate the pace of new releases, with a new release coming every 6 to 9 months. 2.1 is the first release to come out at this faster pace, with the first alpha appearing in January, 3 months after the final version of 2.0 was released.</p> <p>The final release of Python 2.1 was made on April 17, 2001.</p> </div> <div class="section" id="pep-227-nested-scopes"> <h2>PEP 227: Nested Scopes<a class="headerlink" href="#pep-227-nested-scopes" title="Permalink to this headline">¶</a></h2> <p>The largest change in Python 2.1 is to Python’s scoping rules. In Python 2.0, at any given time there are at most three namespaces used to look up variable names: local, module-level, and the built-in namespace. This often surprised people because it didn’t match their intuitive expectations. For example, a nested recursive function definition doesn’t work:</p> <div class="highlight-python"><div class="highlight"><pre><span class="k">def</span> <span class="nf">f</span><span class="p">():</span> <span class="o">...</span> <span class="k">def</span> <span class="nf">g</span><span class="p">(</span><span class="n">value</span><span class="p">):</span> <span class="o">...</span> <span class="k">return</span> <span class="n">g</span><span class="p">(</span><span class="n">value</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span> <span class="o">...</span> </pre></div> </div> <p>The function <tt class="xref py py-func docutils literal"><span class="pre">g()</span></tt> will always raise a <a class="reference internal" href="../library/exceptions.html#exceptions.NameError" title="exceptions.NameError"><tt class="xref py py-exc docutils literal"><span class="pre">NameError</span></tt></a> exception, because the binding of the name <tt class="docutils literal"><span class="pre">g</span></tt> isn’t in either its local namespace or in the module-level namespace. This isn’t much of a problem in practice (how often do you recursively define interior functions like this?), but this also made using the <a class="reference internal" href="../reference/expressions.html#lambda"><tt class="xref std std-keyword docutils literal"><span class="pre">lambda</span></tt></a> statement clumsier, and this was a problem in practice. In code which uses <a class="reference internal" href="../reference/expressions.html#lambda"><tt class="xref std std-keyword docutils literal"><span class="pre">lambda</span></tt></a> you can often find local variables being copied by passing them as the default values of arguments.</p> <div class="highlight-python"><div class="highlight"><pre><span class="k">def</span> <span class="nf">find</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">):</span> <span class="s">"Return list of any entries equal to 'name'"</span> <span class="n">L</span> <span class="o">=</span> <span class="nb">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">:</span> <span class="n">x</span> <span class="o">==</span> <span class="n">name</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">list_attribute</span><span class="p">)</span> <span class="k">return</span> <span class="n">L</span> </pre></div> </div> <p>The readability of Python code written in a strongly functional style suffers greatly as a result.</p> <p>The most significant change to Python 2.1 is that static scoping has been added to the language to fix this problem. As a first effect, the <tt class="docutils literal"><span class="pre">name=name</span></tt> default argument is now unnecessary in the above example. Put simply, when a given variable name is not assigned a value within a function (by an assignment, or the <a class="reference internal" href="../reference/compound_stmts.html#def"><tt class="xref std std-keyword docutils literal"><span class="pre">def</span></tt></a>, <a class="reference internal" href="../reference/compound_stmts.html#class"><tt class="xref std std-keyword docutils literal"><span class="pre">class</span></tt></a>, or <a class="reference internal" href="../reference/simple_stmts.html#import"><tt class="xref std std-keyword docutils literal"><span class="pre">import</span></tt></a> statements), references to the variable will be looked up in the local namespace of the enclosing scope. A more detailed explanation of the rules, and a dissection of the implementation, can be found in the PEP.</p> <p>This change may cause some compatibility problems for code where the same variable name is used both at the module level and as a local variable within a function that contains further function definitions. This seems rather unlikely though, since such code would have been pretty confusing to read in the first place.</p> <p>One side effect of the change is that the <tt class="docutils literal"><span class="pre">from</span> <span class="pre">module</span> <span class="pre">import</span> <span class="pre">*</span></tt> and <a class="reference internal" href="../reference/simple_stmts.html#exec"><tt class="xref std std-keyword docutils literal"><span class="pre">exec</span></tt></a> statements have been made illegal inside a function scope under certain conditions. The Python reference manual has said all along that <tt class="docutils literal"><span class="pre">from</span> <span class="pre">module</span> <span class="pre">import</span> <span class="pre">*</span></tt> is only legal at the top level of a module, but the CPython interpreter has never enforced this before. As part of the implementation of nested scopes, the compiler which turns Python source into bytecodes has to generate different code to access variables in a containing scope. <tt class="docutils literal"><span class="pre">from</span> <span class="pre">module</span> <span class="pre">import</span> <span class="pre">*</span></tt> and <a class="reference internal" href="../reference/simple_stmts.html#exec"><tt class="xref std std-keyword docutils literal"><span class="pre">exec</span></tt></a> make it impossible for the compiler to figure this out, because they add names to the local namespace that are unknowable at compile time. Therefore, if a function contains function definitions or <a class="reference internal" href="../reference/expressions.html#lambda"><tt class="xref std std-keyword docutils literal"><span class="pre">lambda</span></tt></a> expressions with free variables, the compiler will flag this by raising a <a class="reference internal" href="../library/exceptions.html#exceptions.SyntaxError" title="exceptions.SyntaxError"><tt class="xref py py-exc docutils literal"><span class="pre">SyntaxError</span></tt></a> exception.</p> <p>To make the preceding explanation a bit clearer, here’s an example:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">x</span> <span class="o">=</span> <span class="mi">1</span> <span class="k">def</span> <span class="nf">f</span><span class="p">():</span> <span class="c"># The next line is a syntax error</span> <span class="k">exec</span> <span class="s">'x=2'</span> <span class="k">def</span> <span class="nf">g</span><span class="p">():</span> <span class="k">return</span> <span class="n">x</span> </pre></div> </div> <p>Line 4 containing the <a class="reference internal" href="../reference/simple_stmts.html#exec"><tt class="xref std std-keyword docutils literal"><span class="pre">exec</span></tt></a> statement is a syntax error, since <a class="reference internal" href="../reference/simple_stmts.html#exec"><tt class="xref std std-keyword docutils literal"><span class="pre">exec</span></tt></a> would define a new local variable named <tt class="docutils literal"><span class="pre">x</span></tt> whose value should be accessed by <tt class="xref py py-func docutils literal"><span class="pre">g()</span></tt>.</p> <p>This shouldn’t be much of a limitation, since <a class="reference internal" href="../reference/simple_stmts.html#exec"><tt class="xref std std-keyword docutils literal"><span class="pre">exec</span></tt></a> is rarely used in most Python code (and when it is used, it’s often a sign of a poor design anyway).</p> <p>Compatibility concerns have led to nested scopes being introduced gradually; in Python 2.1, they aren’t enabled by default, but can be turned on within a module by using a future statement as described in PEP 236. (See the following section for further discussion of PEP 236.) In Python 2.2, nested scopes will become the default and there will be no way to turn them off, but users will have had all of 2.1’s lifetime to fix any breakage resulting from their introduction.</p> <div class="admonition-see-also admonition seealso"> <p class="first admonition-title">See also</p> <dl class="last docutils"> <dt><span class="target" id="index-0"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0227"><strong>PEP 227</strong></a> - Statically Nested Scopes</dt> <dd>Written and implemented by Jeremy Hylton.</dd> </dl> </div> </div> <div class="section" id="pep-236-future-directives"> <h2>PEP 236: __future__ Directives<a class="headerlink" href="#pep-236-future-directives" title="Permalink to this headline">¶</a></h2> <p>The reaction to nested scopes was widespread concern about the dangers of breaking code with the 2.1 release, and it was strong enough to make the Pythoneers take a more conservative approach. This approach consists of introducing a convention for enabling optional functionality in release N that will become compulsory in release N+1.</p> <p>The syntax uses a <tt class="docutils literal"><span class="pre">from...import</span></tt> statement using the reserved module name <a class="reference internal" href="../library/__future__.html#module-__future__" title="__future__: Future statement definitions"><tt class="xref py py-mod docutils literal"><span class="pre">__future__</span></tt></a>. Nested scopes can be enabled by the following statement:</p> <div class="highlight-python"><div class="highlight"><pre><span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">nested_scopes</span> </pre></div> </div> <p>While it looks like a normal <a class="reference internal" href="../reference/simple_stmts.html#import"><tt class="xref std std-keyword docutils literal"><span class="pre">import</span></tt></a> statement, it’s not; there are strict rules on where such a future statement can be put. They can only be at the top of a module, and must precede any Python code or regular <a class="reference internal" href="../reference/simple_stmts.html#import"><tt class="xref std std-keyword docutils literal"><span class="pre">import</span></tt></a> statements. This is because such statements can affect how the Python bytecode compiler parses code and generates bytecode, so they must precede any statement that will result in bytecodes being produced.</p> <div class="admonition-see-also admonition seealso"> <p class="first admonition-title">See also</p> <dl class="last docutils"> <dt><span class="target" id="index-1"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0236"><strong>PEP 236</strong></a> - Back to the <a class="reference internal" href="../library/__future__.html#module-__future__" title="__future__: Future statement definitions"><tt class="xref py py-mod docutils literal"><span class="pre">__future__</span></tt></a></dt> <dd>Written by Tim Peters, and primarily implemented by Jeremy Hylton.</dd> </dl> </div> </div> <div class="section" id="pep-207-rich-comparisons"> <h2>PEP 207: Rich Comparisons<a class="headerlink" href="#pep-207-rich-comparisons" title="Permalink to this headline">¶</a></h2> <p>In earlier versions, Python’s support for implementing comparisons on user- defined classes and extension types was quite simple. Classes could implement a <a class="reference internal" href="../reference/datamodel.html#object.__cmp__" title="object.__cmp__"><tt class="xref py py-meth docutils literal"><span class="pre">__cmp__()</span></tt></a> method that was given two instances of a class, and could only return 0 if they were equal or +1 or -1 if they weren’t; the method couldn’t raise an exception or return anything other than a Boolean value. Users of Numeric Python often found this model too weak and restrictive, because in the number-crunching programs that numeric Python is used for, it would be more useful to be able to perform elementwise comparisons of two matrices, returning a matrix containing the results of a given comparison for each element. If the two matrices are of different sizes, then the compare has to be able to raise an exception to signal the error.</p> <p>In Python 2.1, rich comparisons were added in order to support this need. Python classes can now individually overload each of the <tt class="docutils literal"><span class="pre"><</span></tt>, <tt class="docutils literal"><span class="pre"><=</span></tt>, <tt class="docutils literal"><span class="pre">></span></tt>, <tt class="docutils literal"><span class="pre">>=</span></tt>, <tt class="docutils literal"><span class="pre">==</span></tt>, and <tt class="docutils literal"><span class="pre">!=</span></tt> operations. The new magic method names are:</p> <table border="1" class="docutils"> <colgroup> <col width="41%" /> <col width="59%" /> </colgroup> <thead valign="bottom"> <tr class="row-odd"><th class="head">Operation</th> <th class="head">Method name</th> </tr> </thead> <tbody valign="top"> <tr class="row-even"><td><tt class="docutils literal"><span class="pre"><</span></tt></td> <td><a class="reference internal" href="../reference/datamodel.html#object.__lt__" title="object.__lt__"><tt class="xref py py-meth docutils literal"><span class="pre">__lt__()</span></tt></a></td> </tr> <tr class="row-odd"><td><tt class="docutils literal"><span class="pre"><=</span></tt></td> <td><a class="reference internal" href="../reference/datamodel.html#object.__le__" title="object.__le__"><tt class="xref py py-meth docutils literal"><span class="pre">__le__()</span></tt></a></td> </tr> <tr class="row-even"><td><tt class="docutils literal"><span class="pre">></span></tt></td> <td><a class="reference internal" href="../reference/datamodel.html#object.__gt__" title="object.__gt__"><tt class="xref py py-meth docutils literal"><span class="pre">__gt__()</span></tt></a></td> </tr> <tr class="row-odd"><td><tt class="docutils literal"><span class="pre">>=</span></tt></td> <td><a class="reference internal" href="../reference/datamodel.html#object.__ge__" title="object.__ge__"><tt class="xref py py-meth docutils literal"><span class="pre">__ge__()</span></tt></a></td> </tr> <tr class="row-even"><td><tt class="docutils literal"><span class="pre">==</span></tt></td> <td><a class="reference internal" href="../reference/datamodel.html#object.__eq__" title="object.__eq__"><tt class="xref py py-meth docutils literal"><span class="pre">__eq__()</span></tt></a></td> </tr> <tr class="row-odd"><td><tt class="docutils literal"><span class="pre">!=</span></tt></td> <td><a class="reference internal" href="../reference/datamodel.html#object.__ne__" title="object.__ne__"><tt class="xref py py-meth docutils literal"><span class="pre">__ne__()</span></tt></a></td> </tr> </tbody> </table> <p>(The magic methods are named after the corresponding Fortran operators <tt class="docutils literal"><span class="pre">.LT.</span></tt>. <tt class="docutils literal"><span class="pre">.LE.</span></tt>, &c. Numeric programmers are almost certainly quite familiar with these names and will find them easy to remember.)</p> <p>Each of these magic methods is of the form <tt class="docutils literal"><span class="pre">method(self,</span> <span class="pre">other)</span></tt>, where <tt class="docutils literal"><span class="pre">self</span></tt> will be the object on the left-hand side of the operator, while <tt class="docutils literal"><span class="pre">other</span></tt> will be the object on the right-hand side. For example, the expression <tt class="docutils literal"><span class="pre">A</span> <span class="pre"><</span> <span class="pre">B</span></tt> will cause <tt class="docutils literal"><span class="pre">A.__lt__(B)</span></tt> to be called.</p> <p>Each of these magic methods can return anything at all: a Boolean, a matrix, a list, or any other Python object. Alternatively they can raise an exception if the comparison is impossible, inconsistent, or otherwise meaningless.</p> <p>The built-in <tt class="xref py py-func docutils literal"><span class="pre">cmp(A,B)()</span></tt> function can use the rich comparison machinery, and now accepts an optional argument specifying which comparison operation to use; this is given as one of the strings <tt class="docutils literal"><span class="pre">"<"</span></tt>, <tt class="docutils literal"><span class="pre">"<="</span></tt>, <tt class="docutils literal"><span class="pre">">"</span></tt>, <tt class="docutils literal"><span class="pre">">="</span></tt>, <tt class="docutils literal"><span class="pre">"=="</span></tt>, or <tt class="docutils literal"><span class="pre">"!="</span></tt>. If called without the optional third argument, <a class="reference internal" href="../library/functions.html#cmp" title="cmp"><tt class="xref py py-func docutils literal"><span class="pre">cmp()</span></tt></a> will only return -1, 0, or +1 as in previous versions of Python; otherwise it will call the appropriate method and can return any Python object.</p> <p>There are also corresponding changes of interest to C programmers; there’s a new slot <tt class="docutils literal"><span class="pre">tp_richcmp</span></tt> in type objects and an API for performing a given rich comparison. I won’t cover the C API here, but will refer you to PEP 207, or to 2.1’s C API documentation, for the full list of related functions.</p> <div class="admonition-see-also admonition seealso"> <p class="first admonition-title">See also</p> <dl class="last docutils"> <dt><span class="target" id="index-2"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0207"><strong>PEP 207</strong></a> - Rich Comparisions</dt> <dd>Written by Guido van Rossum, heavily based on earlier work by David Ascher, and implemented by Guido van Rossum.</dd> </dl> </div> </div> <div class="section" id="pep-230-warning-framework"> <h2>PEP 230: Warning Framework<a class="headerlink" href="#pep-230-warning-framework" title="Permalink to this headline">¶</a></h2> <p>Over its 10 years of existence, Python has accumulated a certain number of obsolete modules and features along the way. It’s difficult to know when a feature is safe to remove, since there’s no way of knowing how much code uses it — perhaps no programs depend on the feature, or perhaps many do. To enable removing old features in a more structured way, a warning framework was added. When the Python developers want to get rid of a feature, it will first trigger a warning in the next version of Python. The following Python version can then drop the feature, and users will have had a full release cycle to remove uses of the old feature.</p> <p>Python 2.1 adds the warning framework to be used in this scheme. It adds a <a class="reference internal" href="../library/warnings.html#module-warnings" title="warnings: Issue warning messages and control their disposition."><tt class="xref py py-mod docutils literal"><span class="pre">warnings</span></tt></a> module that provide functions to issue warnings, and to filter out warnings that you don’t want to be displayed. Third-party modules can also use this framework to deprecate old features that they no longer wish to support.</p> <p>For example, in Python 2.1 the <tt class="xref py py-mod docutils literal"><span class="pre">regex</span></tt> module is deprecated, so importing it causes a warning to be printed:</p> <div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">regex</span> <span class="go">__main__:1: DeprecationWarning: the regex module</span> <span class="go"> is deprecated; please use the re module</span> <span class="go">>>></span> </pre></div> </div> <p>Warnings can be issued by calling the <a class="reference internal" href="../library/warnings.html#warnings.warn" title="warnings.warn"><tt class="xref py py-func docutils literal"><span class="pre">warnings.warn()</span></tt></a> function:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span><span class="s">"feature X no longer supported"</span><span class="p">)</span> </pre></div> </div> <p>The first parameter is the warning message; an additional optional parameters can be used to specify a particular warning category.</p> <p>Filters can be added to disable certain warnings; a regular expression pattern can be applied to the message or to the module name in order to suppress a warning. For example, you may have a program that uses the <tt class="xref py py-mod docutils literal"><span class="pre">regex</span></tt> module and not want to spare the time to convert it to use the <a class="reference internal" href="../library/re.html#module-re" title="re: Regular expression operations."><tt class="xref py py-mod docutils literal"><span class="pre">re</span></tt></a> module right now. The warning can be suppressed by calling</p> <div class="highlight-python"><div class="highlight"><pre><span class="kn">import</span> <span class="nn">warnings</span> <span class="n">warnings</span><span class="o">.</span><span class="n">filterwarnings</span><span class="p">(</span><span class="n">action</span> <span class="o">=</span> <span class="s">'ignore'</span><span class="p">,</span> <span class="n">message</span><span class="o">=</span><span class="s">'.*regex module is deprecated'</span><span class="p">,</span> <span class="n">category</span><span class="o">=</span><span class="ne">DeprecationWarning</span><span class="p">,</span> <span class="n">module</span> <span class="o">=</span> <span class="s">'__main__'</span><span class="p">)</span> </pre></div> </div> <p>This adds a filter that will apply only to warnings of the class <tt class="xref py py-class docutils literal"><span class="pre">DeprecationWarning</span></tt> triggered in the <a class="reference internal" href="../library/__main__.html#module-__main__" title="__main__: The environment where the top-level script is run."><tt class="xref py py-mod docutils literal"><span class="pre">__main__</span></tt></a> module, and applies a regular expression to only match the message about the <tt class="xref py py-mod docutils literal"><span class="pre">regex</span></tt> module being deprecated, and will cause such warnings to be ignored. Warnings can also be printed only once, printed every time the offending code is executed, or turned into exceptions that will cause the program to stop (unless the exceptions are caught in the usual way, of course).</p> <p>Functions were also added to Python’s C API for issuing warnings; refer to PEP 230 or to Python’s API documentation for the details.</p> <div class="admonition-see-also admonition seealso"> <p class="first admonition-title">See also</p> <dl class="last docutils"> <dt><span class="target" id="index-3"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0005"><strong>PEP 5</strong></a> - Guidelines for Language Evolution</dt> <dd>Written by Paul Prescod, to specify procedures to be followed when removing old features from Python. The policy described in this PEP hasn’t been officially adopted, but the eventual policy probably won’t be too different from Prescod’s proposal.</dd> <dt><span class="target" id="index-4"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0230"><strong>PEP 230</strong></a> - Warning Framework</dt> <dd>Written and implemented by Guido van Rossum.</dd> </dl> </div> </div> <div class="section" id="pep-229-new-build-system"> <h2>PEP 229: New Build System<a class="headerlink" href="#pep-229-new-build-system" title="Permalink to this headline">¶</a></h2> <p>When compiling Python, the user had to go in and edit the <tt class="file docutils literal"><span class="pre">Modules/Setup</span></tt> file in order to enable various additional modules; the default set is relatively small and limited to modules that compile on most Unix platforms. This means that on Unix platforms with many more features, most notably Linux, Python installations often don’t contain all useful modules they could.</p> <p>Python 2.0 added the Distutils, a set of modules for distributing and installing extensions. In Python 2.1, the Distutils are used to compile much of the standard library of extension modules, autodetecting which ones are supported on the current machine. It’s hoped that this will make Python installations easier and more featureful.</p> <p>Instead of having to edit the <tt class="file docutils literal"><span class="pre">Modules/Setup</span></tt> file in order to enable modules, a <tt class="file docutils literal"><span class="pre">setup.py</span></tt> script in the top directory of the Python source distribution is run at build time, and attempts to discover which modules can be enabled by examining the modules and header files on the system. If a module is configured in <tt class="file docutils literal"><span class="pre">Modules/Setup</span></tt>, the <tt class="file docutils literal"><span class="pre">setup.py</span></tt> script won’t attempt to compile that module and will defer to the <tt class="file docutils literal"><span class="pre">Modules/Setup</span></tt> file’s contents. This provides a way to specific any strange command-line flags or libraries that are required for a specific platform.</p> <p>In another far-reaching change to the build mechanism, Neil Schemenauer restructured things so Python now uses a single makefile that isn’t recursive, instead of makefiles in the top directory and in each of the <tt class="file docutils literal"><span class="pre">Python/</span></tt>, <tt class="file docutils literal"><span class="pre">Parser/</span></tt>, <tt class="file docutils literal"><span class="pre">Objects/</span></tt>, and <tt class="file docutils literal"><span class="pre">Modules/</span></tt> subdirectories. This makes building Python faster and also makes hacking the Makefiles clearer and simpler.</p> <div class="admonition-see-also admonition seealso"> <p class="first admonition-title">See also</p> <dl class="last docutils"> <dt><span class="target" id="index-5"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0229"><strong>PEP 229</strong></a> - Using Distutils to Build Python</dt> <dd>Written and implemented by A.M. Kuchling.</dd> </dl> </div> </div> <div class="section" id="pep-205-weak-references"> <h2>PEP 205: Weak References<a class="headerlink" href="#pep-205-weak-references" title="Permalink to this headline">¶</a></h2> <p>Weak references, available through the <a class="reference internal" href="../library/weakref.html#module-weakref" title="weakref: Support for weak references and weak dictionaries."><tt class="xref py py-mod docutils literal"><span class="pre">weakref</span></tt></a> module, are a minor but useful new data type in the Python programmer’s toolbox.</p> <p>Storing a reference to an object (say, in a dictionary or a list) has the side effect of keeping that object alive forever. There are a few specific cases where this behaviour is undesirable, object caches being the most common one, and another being circular references in data structures such as trees.</p> <p>For example, consider a memoizing function that caches the results of another function <tt class="xref py py-func docutils literal"><span class="pre">f(x)()</span></tt> by storing the function’s argument and its result in a dictionary:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">_cache</span> <span class="o">=</span> <span class="p">{}</span> <span class="k">def</span> <span class="nf">memoize</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">if</span> <span class="n">_cache</span><span class="o">.</span><span class="n">has_key</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="n">_cache</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="n">retval</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="c"># Cache the returned object</span> <span class="n">_cache</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="o">=</span> <span class="n">retval</span> <span class="k">return</span> <span class="n">retval</span> </pre></div> </div> <p>This version works for simple things such as integers, but it has a side effect; the <tt class="docutils literal"><span class="pre">_cache</span></tt> dictionary holds a reference to the return values, so they’ll never be deallocated until the Python process exits and cleans up This isn’t very noticeable for integers, but if <tt class="xref py py-func docutils literal"><span class="pre">f()</span></tt> returns an object, or a data structure that takes up a lot of memory, this can be a problem.</p> <p>Weak references provide a way to implement a cache that won’t keep objects alive beyond their time. If an object is only accessible through weak references, the object will be deallocated and the weak references will now indicate that the object it referred to no longer exists. A weak reference to an object <em>obj</em> is created by calling <tt class="docutils literal"><span class="pre">wr</span> <span class="pre">=</span> <span class="pre">weakref.ref(obj)</span></tt>. The object being referred to is returned by calling the weak reference as if it were a function: <tt class="docutils literal"><span class="pre">wr()</span></tt>. It will return the referenced object, or <tt class="docutils literal"><span class="pre">None</span></tt> if the object no longer exists.</p> <p>This makes it possible to write a <tt class="xref py py-func docutils literal"><span class="pre">memoize()</span></tt> function whose cache doesn’t keep objects alive, by storing weak references in the cache.</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">_cache</span> <span class="o">=</span> <span class="p">{}</span> <span class="k">def</span> <span class="nf">memoize</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">if</span> <span class="n">_cache</span><span class="o">.</span><span class="n">has_key</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="n">obj</span> <span class="o">=</span> <span class="n">_cache</span><span class="p">[</span><span class="n">x</span><span class="p">]()</span> <span class="c"># If weak reference object still exists,</span> <span class="c"># return it</span> <span class="k">if</span> <span class="n">obj</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span> <span class="k">return</span> <span class="n">obj</span> <span class="n">retval</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="c"># Cache a weak reference</span> <span class="n">_cache</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="o">=</span> <span class="n">weakref</span><span class="o">.</span><span class="n">ref</span><span class="p">(</span><span class="n">retval</span><span class="p">)</span> <span class="k">return</span> <span class="n">retval</span> </pre></div> </div> <p>The <a class="reference internal" href="../library/weakref.html#module-weakref" title="weakref: Support for weak references and weak dictionaries."><tt class="xref py py-mod docutils literal"><span class="pre">weakref</span></tt></a> module also allows creating proxy objects which behave like weak references — an object referenced only by proxy objects is deallocated – but instead of requiring an explicit call to retrieve the object, the proxy transparently forwards all operations to the object as long as the object still exists. If the object is deallocated, attempting to use a proxy will cause a <a class="reference internal" href="../library/weakref.html#weakref.ReferenceError" title="weakref.ReferenceError"><tt class="xref py py-exc docutils literal"><span class="pre">weakref.ReferenceError</span></tt></a> exception to be raised.</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">proxy</span> <span class="o">=</span> <span class="n">weakref</span><span class="o">.</span><span class="n">proxy</span><span class="p">(</span><span class="n">obj</span><span class="p">)</span> <span class="n">proxy</span><span class="o">.</span><span class="n">attr</span> <span class="c"># Equivalent to obj.attr</span> <span class="n">proxy</span><span class="o">.</span><span class="n">meth</span><span class="p">()</span> <span class="c"># Equivalent to obj.meth()</span> <span class="k">del</span> <span class="n">obj</span> <span class="n">proxy</span><span class="o">.</span><span class="n">attr</span> <span class="c"># raises weakref.ReferenceError</span> </pre></div> </div> <div class="admonition-see-also admonition seealso"> <p class="first admonition-title">See also</p> <dl class="last docutils"> <dt><span class="target" id="index-6"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0205"><strong>PEP 205</strong></a> - Weak References</dt> <dd>Written and implemented by Fred L. Drake, Jr.</dd> </dl> </div> </div> <div class="section" id="pep-232-function-attributes"> <h2>PEP 232: Function Attributes<a class="headerlink" href="#pep-232-function-attributes" title="Permalink to this headline">¶</a></h2> <p>In Python 2.1, functions can now have arbitrary information attached to them. People were often using docstrings to hold information about functions and methods, because the <tt class="docutils literal"><span class="pre">__doc__</span></tt> attribute was the only way of attaching any information to a function. For example, in the Zope Web application server, functions are marked as safe for public access by having a docstring, and in John Aycock’s SPARK parsing framework, docstrings hold parts of the BNF grammar to be parsed. This overloading is unfortunate, since docstrings are really intended to hold a function’s documentation; for example, it means you can’t properly document functions intended for private use in Zope.</p> <p>Arbitrary attributes can now be set and retrieved on functions using the regular Python syntax:</p> <div class="highlight-python"><div class="highlight"><pre><span class="k">def</span> <span class="nf">f</span><span class="p">():</span> <span class="k">pass</span> <span class="n">f</span><span class="o">.</span><span class="n">publish</span> <span class="o">=</span> <span class="mi">1</span> <span class="n">f</span><span class="o">.</span><span class="n">secure</span> <span class="o">=</span> <span class="mi">1</span> <span class="n">f</span><span class="o">.</span><span class="n">grammar</span> <span class="o">=</span> <span class="s">"A ::= B (C D)*"</span> </pre></div> </div> <p>The dictionary containing attributes can be accessed as the function’s <tt class="xref py py-attr docutils literal"><span class="pre">__dict__</span></tt>. Unlike the <tt class="xref py py-attr docutils literal"><span class="pre">__dict__</span></tt> attribute of class instances, in functions you can actually assign a new dictionary to <tt class="xref py py-attr docutils literal"><span class="pre">__dict__</span></tt>, though the new value is restricted to a regular Python dictionary; you <em>can’t</em> be tricky and set it to a <a class="reference internal" href="../library/userdict.html#module-UserDict" title="UserDict: Class wrapper for dictionary objects."><tt class="xref py py-class docutils literal"><span class="pre">UserDict</span></tt></a> instance, or any other random object that behaves like a mapping.</p> <div class="admonition-see-also admonition seealso"> <p class="first admonition-title">See also</p> <dl class="last docutils"> <dt><span class="target" id="index-7"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0232"><strong>PEP 232</strong></a> - Function Attributes</dt> <dd>Written and implemented by Barry Warsaw.</dd> </dl> </div> </div> <div class="section" id="pep-235-importing-modules-on-case-insensitive-platforms"> <h2>PEP 235: Importing Modules on Case-Insensitive Platforms<a class="headerlink" href="#pep-235-importing-modules-on-case-insensitive-platforms" title="Permalink to this headline">¶</a></h2> <p>Some operating systems have filesystems that are case-insensitive, MacOS and Windows being the primary examples; on these systems, it’s impossible to distinguish the filenames <tt class="docutils literal"><span class="pre">FILE.PY</span></tt> and <tt class="docutils literal"><span class="pre">file.py</span></tt>, even though they do store the file’s name in its original case (they’re case-preserving, too).</p> <p>In Python 2.1, the <a class="reference internal" href="../reference/simple_stmts.html#import"><tt class="xref std std-keyword docutils literal"><span class="pre">import</span></tt></a> statement will work to simulate case- sensitivity on case-insensitive platforms. Python will now search for the first case-sensitive match by default, raising an <a class="reference internal" href="../library/exceptions.html#exceptions.ImportError" title="exceptions.ImportError"><tt class="xref py py-exc docutils literal"><span class="pre">ImportError</span></tt></a> if no such file is found, so <tt class="docutils literal"><span class="pre">import</span> <span class="pre">file</span></tt> will not import a module named <tt class="docutils literal"><span class="pre">FILE.PY</span></tt>. Case- insensitive matching can be requested by setting the <span class="target" id="index-8"></span><a class="reference internal" href="../using/cmdline.html#envvar-PYTHONCASEOK"><tt class="xref std std-envvar docutils literal"><span class="pre">PYTHONCASEOK</span></tt></a> environment variable before starting the Python interpreter.</p> </div> <div class="section" id="pep-217-interactive-display-hook"> <h2>PEP 217: Interactive Display Hook<a class="headerlink" href="#pep-217-interactive-display-hook" title="Permalink to this headline">¶</a></h2> <p>When using the Python interpreter interactively, the output of commands is displayed using the built-in <a class="reference internal" href="../library/repr.html#module-repr" title="repr: Alternate repr() implementation with size limits."><tt class="xref py py-func docutils literal"><span class="pre">repr()</span></tt></a> function. In Python 2.1, the variable <a class="reference internal" href="../library/sys.html#sys.displayhook" title="sys.displayhook"><tt class="xref py py-func docutils literal"><span class="pre">sys.displayhook()</span></tt></a> can be set to a callable object which will be called instead of <a class="reference internal" href="../library/repr.html#module-repr" title="repr: Alternate repr() implementation with size limits."><tt class="xref py py-func docutils literal"><span class="pre">repr()</span></tt></a>. For example, you can set it to a special pretty- printing function:</p> <div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="c"># Create a recursive data structure</span> <span class="gp">... </span><span class="n">L</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">]</span> <span class="gp">>>> </span><span class="n">L</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">L</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">L</span> <span class="c"># Show Python's default output</span> <span class="go">[1, 2, 3, [...]]</span> <span class="gp">>>> </span><span class="c"># Use pprint.pprint() as the display function</span> <span class="gp">... </span><span class="kn">import</span> <span class="nn">sys</span><span class="o">,</span> <span class="nn">pprint</span> <span class="gp">>>> </span><span class="n">sys</span><span class="o">.</span><span class="n">displayhook</span> <span class="o">=</span> <span class="n">pprint</span><span class="o">.</span><span class="n">pprint</span> <span class="gp">>>> </span><span class="n">L</span> <span class="go">[1, 2, 3, <Recursion on list with id=135143996>]</span> <span class="go">>>></span> </pre></div> </div> <div class="admonition-see-also admonition seealso"> <p class="first admonition-title">See also</p> <dl class="last docutils"> <dt><span class="target" id="index-9"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0217"><strong>PEP 217</strong></a> - Display Hook for Interactive Use</dt> <dd>Written and implemented by Moshe Zadka.</dd> </dl> </div> </div> <div class="section" id="pep-208-new-coercion-model"> <h2>PEP 208: New Coercion Model<a class="headerlink" href="#pep-208-new-coercion-model" title="Permalink to this headline">¶</a></h2> <p>How numeric coercion is done at the C level was significantly modified. This will only affect the authors of C extensions to Python, allowing them more flexibility in writing extension types that support numeric operations.</p> <p>Extension types can now set the type flag <tt class="docutils literal"><span class="pre">Py_TPFLAGS_CHECKTYPES</span></tt> in their <tt class="docutils literal"><span class="pre">PyTypeObject</span></tt> structure to indicate that they support the new coercion model. In such extension types, the numeric slot functions can no longer assume that they’ll be passed two arguments of the same type; instead they may be passed two arguments of differing types, and can then perform their own internal coercion. If the slot function is passed a type it can’t handle, it can indicate the failure by returning a reference to the <tt class="docutils literal"><span class="pre">Py_NotImplemented</span></tt> singleton value. The numeric functions of the other type will then be tried, and perhaps they can handle the operation; if the other type also returns <tt class="docutils literal"><span class="pre">Py_NotImplemented</span></tt>, then a <a class="reference internal" href="../library/exceptions.html#exceptions.TypeError" title="exceptions.TypeError"><tt class="xref py py-exc docutils literal"><span class="pre">TypeError</span></tt></a> will be raised. Numeric methods written in Python can also return <tt class="docutils literal"><span class="pre">Py_NotImplemented</span></tt>, causing the interpreter to act as if the method did not exist (perhaps raising a <a class="reference internal" href="../library/exceptions.html#exceptions.TypeError" title="exceptions.TypeError"><tt class="xref py py-exc docutils literal"><span class="pre">TypeError</span></tt></a>, perhaps trying another object’s numeric methods).</p> <div class="admonition-see-also admonition seealso"> <p class="first admonition-title">See also</p> <dl class="last docutils"> <dt><span class="target" id="index-10"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0208"><strong>PEP 208</strong></a> - Reworking the Coercion Model</dt> <dd>Written and implemented by Neil Schemenauer, heavily based upon earlier work by Marc-André Lemburg. Read this to understand the fine points of how numeric operations will now be processed at the C level.</dd> </dl> </div> </div> <div class="section" id="pep-241-metadata-in-python-packages"> <h2>PEP 241: Metadata in Python Packages<a class="headerlink" href="#pep-241-metadata-in-python-packages" title="Permalink to this headline">¶</a></h2> <p>A common complaint from Python users is that there’s no single catalog of all the Python modules in existence. T. Middleton’s Vaults of Parnassus at <a class="reference external" href="http://www.vex.net/parnassus/">http://www.vex.net/parnassus/</a> are the largest catalog of Python modules, but registering software at the Vaults is optional, and many people don’t bother.</p> <p>As a first small step toward fixing the problem, Python software packaged using the Distutils <strong class="command">sdist</strong> command will include a file named <tt class="file docutils literal"><span class="pre">PKG-INFO</span></tt> containing information about the package such as its name, version, and author (metadata, in cataloguing terminology). PEP 241 contains the full list of fields that can be present in the <tt class="file docutils literal"><span class="pre">PKG-INFO</span></tt> file. As people began to package their software using Python 2.1, more and more packages will include metadata, making it possible to build automated cataloguing systems and experiment with them. With the result experience, perhaps it’ll be possible to design a really good catalog and then build support for it into Python 2.2. For example, the Distutils <strong class="command">sdist</strong> and <strong class="command">bdist_*</strong> commands could support a <em class="xref std std-option">upload</em> option that would automatically upload your package to a catalog server.</p> <p>You can start creating packages containing <tt class="file docutils literal"><span class="pre">PKG-INFO</span></tt> even if you’re not using Python 2.1, since a new release of the Distutils will be made for users of earlier Python versions. Version 1.0.2 of the Distutils includes the changes described in PEP 241, as well as various bugfixes and enhancements. It will be available from the Distutils SIG at <a class="reference external" href="http://www.python.org/sigs/distutils-sig/">http://www.python.org/sigs/distutils-sig/</a>.</p> <div class="admonition-see-also admonition seealso"> <p class="first admonition-title">See also</p> <dl class="last docutils"> <dt><span class="target" id="index-11"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0241"><strong>PEP 241</strong></a> - Metadata for Python Software Packages</dt> <dd>Written and implemented by A.M. Kuchling.</dd> <dt><span class="target" id="index-12"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0243"><strong>PEP 243</strong></a> - Module Repository Upload Mechanism</dt> <dd>Written by Sean Reifschneider, this draft PEP describes a proposed mechanism for uploading Python packages to a central server.</dd> </dl> </div> </div> <div class="section" id="new-and-improved-modules"> <h2>New and Improved Modules<a class="headerlink" href="#new-and-improved-modules" title="Permalink to this headline">¶</a></h2> <ul> <li><p class="first">Ka-Ping Yee contributed two new modules: <tt class="xref py py-mod docutils literal"><span class="pre">inspect.py</span></tt>, a module for getting information about live Python code, and <tt class="xref py py-mod docutils literal"><span class="pre">pydoc.py</span></tt>, a module for interactively converting docstrings to HTML or text. As a bonus, <tt class="file docutils literal"><span class="pre">Tools/scripts/pydoc</span></tt>, which is now automatically installed, uses <tt class="xref py py-mod docutils literal"><span class="pre">pydoc.py</span></tt> to display documentation given a Python module, package, or class name. For example, <tt class="docutils literal"><span class="pre">pydoc</span> <span class="pre">xml.dom</span></tt> displays the following:</p> <div class="highlight-python"><pre>Python Library Documentation: package xml.dom in xml NAME xml.dom - W3C Document Object Model implementation for Python. FILE /usr/local/lib/python2.1/xml/dom/__init__.pyc DESCRIPTION The Python mapping of the Document Object Model is documented in the Python Library Reference in the section on the xml.dom package. This package contains the following modules: ...</pre> </div> <p><tt class="file docutils literal"><span class="pre">pydoc</span></tt> also includes a Tk-based interactive help browser. <tt class="file docutils literal"><span class="pre">pydoc</span></tt> quickly becomes addictive; try it out!</p> </li> <li><p class="first">Two different modules for unit testing were added to the standard library. The <a class="reference internal" href="../library/doctest.html#module-doctest" title="doctest: Test pieces of code within docstrings."><tt class="xref py py-mod docutils literal"><span class="pre">doctest</span></tt></a> module, contributed by Tim Peters, provides a testing framework based on running embedded examples in docstrings and comparing the results against the expected output. PyUnit, contributed by Steve Purcell, is a unit testing framework inspired by JUnit, which was in turn an adaptation of Kent Beck’s Smalltalk testing framework. See <a class="reference external" href="http://pyunit.sourceforge.net/">http://pyunit.sourceforge.net/</a> for more information about PyUnit.</p> </li> <li><p class="first">The <a class="reference internal" href="../library/difflib.html#module-difflib" title="difflib: Helpers for computing differences between objects."><tt class="xref py py-mod docutils literal"><span class="pre">difflib</span></tt></a> module contains a class, <tt class="xref py py-class docutils literal"><span class="pre">SequenceMatcher</span></tt>, which compares two sequences and computes the changes required to transform one sequence into the other. For example, this module can be used to write a tool similar to the Unix <strong class="program">diff</strong> program, and in fact the sample program <tt class="file docutils literal"><span class="pre">Tools/scripts/ndiff.py</span></tt> demonstrates how to write such a script.</p> </li> <li><p class="first"><a class="reference internal" href="../library/curses.panel.html#module-curses.panel" title="curses.panel: A panel stack extension that adds depth to curses windows."><tt class="xref py py-mod docutils literal"><span class="pre">curses.panel</span></tt></a>, a wrapper for the panel library, part of ncurses and of SYSV curses, was contributed by Thomas Gellekum. The panel library provides windows with the additional feature of depth. Windows can be moved higher or lower in the depth ordering, and the panel library figures out where panels overlap and which sections are visible.</p> </li> <li><p class="first">The PyXML package has gone through a few releases since Python 2.0, and Python 2.1 includes an updated version of the <a class="reference internal" href="../library/xml.html#module-xml" title="xml: Package containing XML processing modules"><tt class="xref py py-mod docutils literal"><span class="pre">xml</span></tt></a> package. Some of the noteworthy changes include support for Expat 1.2 and later versions, the ability for Expat parsers to handle files in any encoding supported by Python, and various bugfixes for SAX, DOM, and the <tt class="xref py py-mod docutils literal"><span class="pre">minidom</span></tt> module.</p> </li> <li><p class="first">Ping also contributed another hook for handling uncaught exceptions. <a class="reference internal" href="../library/sys.html#sys.excepthook" title="sys.excepthook"><tt class="xref py py-func docutils literal"><span class="pre">sys.excepthook()</span></tt></a> can be set to a callable object. When an exception isn’t caught by any <a class="reference internal" href="../reference/compound_stmts.html#try"><tt class="xref std std-keyword docutils literal"><span class="pre">try</span></tt></a>...<a class="reference internal" href="../reference/compound_stmts.html#except"><tt class="xref std std-keyword docutils literal"><span class="pre">except</span></tt></a> blocks, the exception will be passed to <a class="reference internal" href="../library/sys.html#sys.excepthook" title="sys.excepthook"><tt class="xref py py-func docutils literal"><span class="pre">sys.excepthook()</span></tt></a>, which can then do whatever it likes. At the Ninth Python Conference, Ping demonstrated an application for this hook: printing an extended traceback that not only lists the stack frames, but also lists the function arguments and the local variables for each frame.</p> </li> <li><p class="first">Various functions in the <a class="reference internal" href="../library/time.html#module-time" title="time: Time access and conversions."><tt class="xref py py-mod docutils literal"><span class="pre">time</span></tt></a> module, such as <tt class="xref py py-func docutils literal"><span class="pre">asctime()</span></tt> and <tt class="xref py py-func docutils literal"><span class="pre">localtime()</span></tt>, require a floating point argument containing the time in seconds since the epoch. The most common use of these functions is to work with the current time, so the floating point argument has been made optional; when a value isn’t provided, the current time will be used. For example, log file entries usually need a string containing the current time; in Python 2.1, <tt class="docutils literal"><span class="pre">time.asctime()</span></tt> can be used, instead of the lengthier <tt class="docutils literal"><span class="pre">time.asctime(time.localtime(time.time()))</span></tt> that was previously required.</p> <p>This change was proposed and implemented by Thomas Wouters.</p> </li> <li><p class="first">The <a class="reference internal" href="../library/ftplib.html#module-ftplib" title="ftplib: FTP protocol client (requires sockets)."><tt class="xref py py-mod docutils literal"><span class="pre">ftplib</span></tt></a> module now defaults to retrieving files in passive mode, because passive mode is more likely to work from behind a firewall. This request came from the Debian bug tracking system, since other Debian packages use <a class="reference internal" href="../library/ftplib.html#module-ftplib" title="ftplib: FTP protocol client (requires sockets)."><tt class="xref py py-mod docutils literal"><span class="pre">ftplib</span></tt></a> to retrieve files and then don’t work from behind a firewall. It’s deemed unlikely that this will cause problems for anyone, because Netscape defaults to passive mode and few people complain, but if passive mode is unsuitable for your application or network setup, call <tt class="xref py py-meth docutils literal"><span class="pre">set_pasv(0)()</span></tt> on FTP objects to disable passive mode.</p> </li> <li><p class="first">Support for raw socket access has been added to the <a class="reference internal" href="../library/socket.html#module-socket" title="socket: Low-level networking interface."><tt class="xref py py-mod docutils literal"><span class="pre">socket</span></tt></a> module, contributed by Grant Edwards.</p> </li> <li><p class="first">The <a class="reference internal" href="../library/profile.html#module-pstats" title="pstats: Statistics object for use with the profiler."><tt class="xref py py-mod docutils literal"><span class="pre">pstats</span></tt></a> module now contains a simple interactive statistics browser for displaying timing profiles for Python programs, invoked when the module is run as a script. Contributed by Eric S. Raymond.</p> </li> <li><p class="first">A new implementation-dependent function, <tt class="xref py py-func docutils literal"><span class="pre">sys._getframe([depth])()</span></tt>, has been added to return a given frame object from the current call stack. <a class="reference internal" href="../library/sys.html#sys._getframe" title="sys._getframe"><tt class="xref py py-func docutils literal"><span class="pre">sys._getframe()</span></tt></a> returns the frame at the top of the call stack; if the optional integer argument <em>depth</em> is supplied, the function returns the frame that is <em>depth</em> calls below the top of the stack. For example, <tt class="docutils literal"><span class="pre">sys._getframe(1)</span></tt> returns the caller’s frame object.</p> <p>This function is only present in CPython, not in Jython or the .NET implementation. Use it for debugging, and resist the temptation to put it into production code.</p> </li> </ul> </div> <div class="section" id="other-changes-and-fixes"> <h2>Other Changes and Fixes<a class="headerlink" href="#other-changes-and-fixes" title="Permalink to this headline">¶</a></h2> <p>There were relatively few smaller changes made in Python 2.1 due to the shorter release cycle. A search through the CVS change logs turns up 117 patches applied, and 136 bugs fixed; both figures are likely to be underestimates. Some of the more notable changes are:</p> <ul> <li><p class="first">A specialized object allocator is now optionally available, that should be faster than the system <tt class="xref py py-func docutils literal"><span class="pre">malloc()</span></tt> and have less memory overhead. The allocator uses C’s <tt class="xref py py-func docutils literal"><span class="pre">malloc()</span></tt> function to get large pools of memory, and then fulfills smaller memory requests from these pools. It can be enabled by providing the <em class="xref std std-option">--with-pymalloc</em> option to the <strong class="program">configure</strong> script; see <tt class="file docutils literal"><span class="pre">Objects/obmalloc.c</span></tt> for the implementation details.</p> <p>Authors of C extension modules should test their code with the object allocator enabled, because some incorrect code may break, causing core dumps at runtime. There are a bunch of memory allocation functions in Python’s C API that have previously been just aliases for the C library’s <tt class="xref py py-func docutils literal"><span class="pre">malloc()</span></tt> and <tt class="xref py py-func docutils literal"><span class="pre">free()</span></tt>, meaning that if you accidentally called mismatched functions, the error wouldn’t be noticeable. When the object allocator is enabled, these functions aren’t aliases of <tt class="xref py py-func docutils literal"><span class="pre">malloc()</span></tt> and <tt class="xref py py-func docutils literal"><span class="pre">free()</span></tt> any more, and calling the wrong function to free memory will get you a core dump. For example, if memory was allocated using <tt class="xref py py-func docutils literal"><span class="pre">PyMem_New()</span></tt>, it has to be freed using <tt class="xref py py-func docutils literal"><span class="pre">PyMem_Del()</span></tt>, not <tt class="xref py py-func docutils literal"><span class="pre">free()</span></tt>. A few modules included with Python fell afoul of this and had to be fixed; doubtless there are more third-party modules that will have the same problem.</p> <p>The object allocator was contributed by Vladimir Marangozov.</p> </li> <li><p class="first">The speed of line-oriented file I/O has been improved because people often complain about its lack of speed, and because it’s often been used as a naïve benchmark. The <a class="reference internal" href="../library/readline.html#module-readline" title="readline: GNU readline support for Python. (Unix)"><tt class="xref py py-meth docutils literal"><span class="pre">readline()</span></tt></a> method of file objects has therefore been rewritten to be much faster. The exact amount of the speedup will vary from platform to platform depending on how slow the C library’s <tt class="xref py py-func docutils literal"><span class="pre">getc()</span></tt> was, but is around 66%, and potentially much faster on some particular operating systems. Tim Peters did much of the benchmarking and coding for this change, motivated by a discussion in comp.lang.python.</p> <p>A new module and method for file objects was also added, contributed by Jeff Epler. The new method, <tt class="xref py py-meth docutils literal"><span class="pre">xreadlines()</span></tt>, is similar to the existing <a class="reference internal" href="../library/functions.html#xrange" title="xrange"><tt class="xref py py-func docutils literal"><span class="pre">xrange()</span></tt></a> built-in. <tt class="xref py py-func docutils literal"><span class="pre">xreadlines()</span></tt> returns an opaque sequence object that only supports being iterated over, reading a line on every iteration but not reading the entire file into memory as the existing <tt class="xref py py-meth docutils literal"><span class="pre">readlines()</span></tt> method does. You’d use it like this:</p> <div class="highlight-python"><div class="highlight"><pre><span class="k">for</span> <span class="n">line</span> <span class="ow">in</span> <span class="n">sys</span><span class="o">.</span><span class="n">stdin</span><span class="o">.</span><span class="n">xreadlines</span><span class="p">():</span> <span class="c"># ... do something for each line ...</span> <span class="o">...</span> </pre></div> </div> <p>For a fuller discussion of the line I/O changes, see the python-dev summary for January 1-15, 2001 at <a class="reference external" href="http://www.python.org/dev/summary/2001-01-1/">http://www.python.org/dev/summary/2001-01-1/</a>.</p> </li> <li><p class="first">A new method, <tt class="xref py py-meth docutils literal"><span class="pre">popitem()</span></tt>, was added to dictionaries to enable destructively iterating through the contents of a dictionary; this can be faster for large dictionaries because there’s no need to construct a list containing all the keys or values. <tt class="docutils literal"><span class="pre">D.popitem()</span></tt> removes a random <tt class="docutils literal"><span class="pre">(key,</span> <span class="pre">value)</span></tt> pair from the dictionary <tt class="docutils literal"><span class="pre">D</span></tt> and returns it as a 2-tuple. This was implemented mostly by Tim Peters and Guido van Rossum, after a suggestion and preliminary patch by Moshe Zadka.</p> </li> <li><p class="first">Modules can now control which names are imported when <tt class="docutils literal"><span class="pre">from</span> <span class="pre">module</span> <span class="pre">import</span> <span class="pre">*</span></tt> is used, by defining an <tt class="docutils literal"><span class="pre">__all__</span></tt> attribute containing a list of names that will be imported. One common complaint is that if the module imports other modules such as <a class="reference internal" href="../library/sys.html#module-sys" title="sys: Access system-specific parameters and functions."><tt class="xref py py-mod docutils literal"><span class="pre">sys</span></tt></a> or <a class="reference internal" href="../library/string.html#module-string" title="string: Common string operations."><tt class="xref py py-mod docutils literal"><span class="pre">string</span></tt></a>, <tt class="docutils literal"><span class="pre">from</span> <span class="pre">module</span> <span class="pre">import</span> <span class="pre">*</span></tt> will add them to the importing module’s namespace. To fix this, simply list the public names in <tt class="docutils literal"><span class="pre">__all__</span></tt>:</p> <div class="highlight-python"><div class="highlight"><pre><span class="c"># List public names</span> <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s">'Database'</span><span class="p">,</span> <span class="s">'open'</span><span class="p">]</span> </pre></div> </div> <p>A stricter version of this patch was first suggested and implemented by Ben Wolfson, but after some python-dev discussion, a weaker final version was checked in.</p> </li> <li><p class="first">Applying <a class="reference internal" href="../library/repr.html#module-repr" title="repr: Alternate repr() implementation with size limits."><tt class="xref py py-func docutils literal"><span class="pre">repr()</span></tt></a> to strings previously used octal escapes for non-printable characters; for example, a newline was <tt class="docutils literal"><span class="pre">'\012'</span></tt>. This was a vestigial trace of Python’s C ancestry, but today octal is of very little practical use. Ka-Ping Yee suggested using hex escapes instead of octal ones, and using the <tt class="docutils literal"><span class="pre">\n</span></tt>, <tt class="docutils literal"><span class="pre">\t</span></tt>, <tt class="docutils literal"><span class="pre">\r</span></tt> escapes for the appropriate characters, and implemented this new formatting.</p> </li> <li><p class="first">Syntax errors detected at compile-time can now raise exceptions containing the filename and line number of the error, a pleasant side effect of the compiler reorganization done by Jeremy Hylton.</p> </li> <li><p class="first">C extensions which import other modules have been changed to use <tt class="xref py py-func docutils literal"><span class="pre">PyImport_ImportModule()</span></tt>, which means that they will use any import hooks that have been installed. This is also encouraged for third-party extensions that need to import some other module from C code.</p> </li> <li><p class="first">The size of the Unicode character database was shrunk by another 340K thanks to Fredrik Lundh.</p> </li> <li><p class="first">Some new ports were contributed: MacOS X (by Steven Majewski), Cygwin (by Jason Tishler); RISCOS (by Dietmar Schwertberger); Unixware 7 (by Billy G. Allie).</p> </li> </ul> <p>And there’s the usual list of minor bugfixes, minor memory leaks, docstring edits, and other tweaks, too lengthy to be worth itemizing; see the CVS logs for the full details if you want them.</p> </div> <div class="section" id="acknowledgements"> <h2>Acknowledgements<a class="headerlink" href="#acknowledgements" title="Permalink to this headline">¶</a></h2> <p>The author would like to thank the following people for offering suggestions on various drafts of this article: Graeme Cross, David Goodger, Jay Graves, Michael Hudson, Marc-André Lemburg, Fredrik Lundh, Neil Schemenauer, Thomas Wouters.</p> </div> </div> </div> </div> </div> <div class="sphinxsidebar"> <div class="sphinxsidebarwrapper"> <h3><a href="../contents.html">Table Of Contents</a></h3> <ul> <li><a class="reference internal" href="#">What’s New in Python 2.1</a><ul> <li><a class="reference internal" href="#introduction">Introduction</a></li> <li><a class="reference internal" href="#pep-227-nested-scopes">PEP 227: Nested Scopes</a></li> <li><a class="reference internal" href="#pep-236-future-directives">PEP 236: __future__ Directives</a></li> <li><a class="reference internal" href="#pep-207-rich-comparisons">PEP 207: Rich Comparisons</a></li> <li><a class="reference internal" href="#pep-230-warning-framework">PEP 230: Warning Framework</a></li> <li><a class="reference internal" href="#pep-229-new-build-system">PEP 229: New Build System</a></li> <li><a class="reference internal" href="#pep-205-weak-references">PEP 205: Weak References</a></li> <li><a class="reference internal" href="#pep-232-function-attributes">PEP 232: Function Attributes</a></li> <li><a class="reference internal" href="#pep-235-importing-modules-on-case-insensitive-platforms">PEP 235: Importing Modules on Case-Insensitive Platforms</a></li> <li><a class="reference internal" href="#pep-217-interactive-display-hook">PEP 217: Interactive Display Hook</a></li> <li><a class="reference internal" href="#pep-208-new-coercion-model">PEP 208: New Coercion Model</a></li> <li><a class="reference internal" href="#pep-241-metadata-in-python-packages">PEP 241: Metadata in Python Packages</a></li> <li><a class="reference internal" href="#new-and-improved-modules">New and Improved Modules</a></li> <li><a class="reference internal" href="#other-changes-and-fixes">Other Changes and Fixes</a></li> <li><a class="reference internal" href="#acknowledgements">Acknowledgements</a></li> </ul> </li> </ul> <h4>Previous topic</h4> <p class="topless"><a href="2.2.html" title="previous chapter">What’s New in Python 2.2</a></p> <h4>Next topic</h4> <p class="topless"><a href="2.0.html" title="next chapter">What’s New in Python 2.0</a></p> <h3>This Page</h3> <ul class="this-page-menu"> <li><a href="../bugs.html">Report a Bug</a></li> <li><a href="../_sources/whatsnew/2.1.txt" rel="nofollow">Show Source</a></li> </ul> <div id="searchbox" style="display: none"> <h3>Quick search</h3> <form class="search" action="../search.html" method="get"> <input type="text" name="q" /> <input type="submit" value="Go" /> <input type="hidden" name="check_keywords" value="yes" /> <input type="hidden" name="area" value="default" /> </form> <p class="searchtip" style="font-size: 90%"> Enter search terms or a module, class or function name. </p> </div> <script type="text/javascript">$('#searchbox').show(0);</script> </div> </div> <div class="clearer"></div> </div> <div class="related"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="../genindex.html" title="General Index" >index</a></li> <li class="right" > <a href="../py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="right" > <a href="2.0.html" title="What’s New in Python 2.0" >next</a> |</li> <li class="right" > <a href="2.2.html" title="What’s New in Python 2.2" >previous</a> |</li> <li><img src="../_static/py.png" alt="" style="vertical-align: middle; margin-top: -1px"/></li> <li><a href="http://www.python.org/">Python</a> »</li> <li> <a href="../index.html">Python 2.7.5 documentation</a> » </li> <li><a href="index.html" >What’s New in Python</a> »</li> </ul> </div> <div class="footer"> © <a href="../copyright.html">Copyright</a> 1990-2019, Python Software Foundation. <br /> The Python Software Foundation is a non-profit corporation. <a href="http://www.python.org/psf/donations/">Please donate.</a> <br /> Last updated on Jul 03, 2019. <a href="../bugs.html">Found a bug</a>? <br /> Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3. </div> </body> </html>