korsygfhrtzangaiide
Elepffwdsff
/
usr
/
share
/
doc
/
python-docs-2.7.5
/
html
/
library
/
Upload FileeE
HOME
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>26.4. The Python Profilers — Python 2.7.5 documentation</title> <link rel="stylesheet" href="../_static/default.css" type="text/css" /> <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> <script type="text/javascript"> var DOCUMENTATION_OPTIONS = { URL_ROOT: '../', VERSION: '2.7.5', COLLAPSE_INDEX: false, FILE_SUFFIX: '.html', HAS_SOURCE: true }; </script> <script type="text/javascript" src="../_static/jquery.js"></script> <script type="text/javascript" src="../_static/underscore.js"></script> <script type="text/javascript" src="../_static/doctools.js"></script> <script type="text/javascript" src="../_static/sidebar.js"></script> <link rel="search" type="application/opensearchdescription+xml" title="Search within Python 2.7.5 documentation" href="../_static/opensearch.xml"/> <link rel="author" title="About these documents" href="../about.html" /> <link rel="copyright" title="Copyright" href="../copyright.html" /> <link rel="top" title="Python 2.7.5 documentation" href="../index.html" /> <link rel="up" title="26. Debugging and Profiling" href="debug.html" /> <link rel="next" title="26.5. hotshot — High performance logging profiler" href="hotshot.html" /> <link rel="prev" title="26.2. pdb — The Python Debugger" href="pdb.html" /> <link rel="shortcut icon" type="image/png" href="../_static/py.png" /> <script type="text/javascript" src="../_static/copybutton.js"></script> </head> <body> <div class="related"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="../genindex.html" title="General Index" accesskey="I">index</a></li> <li class="right" > <a href="../py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="right" > <a href="hotshot.html" title="26.5. hotshot — High performance logging profiler" accesskey="N">next</a> |</li> <li class="right" > <a href="pdb.html" title="26.2. pdb — The Python Debugger" accesskey="P">previous</a> |</li> <li><img src="../_static/py.png" alt="" style="vertical-align: middle; margin-top: -1px"/></li> <li><a href="http://www.python.org/">Python</a> »</li> <li> <a href="../index.html">Python 2.7.5 documentation</a> » </li> <li><a href="index.html" >The Python Standard Library</a> »</li> <li><a href="debug.html" accesskey="U">26. Debugging and Profiling</a> »</li> </ul> </div> <div class="document"> <div class="documentwrapper"> <div class="bodywrapper"> <div class="body"> <div class="section" id="the-python-profilers"> <span id="profile"></span><h1>26.4. The Python Profilers<a class="headerlink" href="#the-python-profilers" title="Permalink to this headline">¶</a></h1> <p><strong>Source code:</strong> <a class="reference external" href="http://hg.python.org/cpython/file/2.7/Lib/profile.py">Lib/profile.py</a> and <a class="reference external" href="http://hg.python.org/cpython/file/2.7/Lib/pstats.py">Lib/pstats.py</a></p> <hr class="docutils" /> <div class="section" id="introduction-to-the-profilers"> <span id="profiler-introduction"></span><h2>26.4.1. Introduction to the profilers<a class="headerlink" href="#introduction-to-the-profilers" title="Permalink to this headline">¶</a></h2> <p id="index-0"><a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a> and <a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a> provide <em class="dfn">deterministic profiling</em> of Python programs. A <em class="dfn">profile</em> is a set of statistics that describes how often and for how long various parts of the program executed. These statistics can be formatted into reports via the <a class="reference internal" href="#module-pstats" title="pstats: Statistics object for use with the profiler."><tt class="xref py py-mod docutils literal"><span class="pre">pstats</span></tt></a> module.</p> <p>The Python standard library provides three different implementations of the same profiling interface:</p> <ol class="arabic"> <li><p class="first"><a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a> is recommended for most users; it’s a C extension with reasonable overhead that makes it suitable for profiling long-running programs. Based on <tt class="xref py py-mod docutils literal"><span class="pre">lsprof</span></tt>, contributed by Brett Rosen and Ted Czotter.</p> <p class="versionadded"> <span class="versionmodified">New in version 2.5.</span></p> </li> <li><p class="first"><a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a>, a pure Python module whose interface is imitated by <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a>, but which adds significant overhead to profiled programs. If you’re trying to extend the profiler in some way, the task might be easier with this module.</p> <p class="versionchanged"> <span class="versionmodified">Changed in version 2.4: </span>Now also reports the time spent in calls to built-in functions and methods.</p> </li> <li><p class="first"><a class="reference internal" href="hotshot.html#module-hotshot" title="hotshot: High performance logging profiler, mostly written in C."><tt class="xref py py-mod docutils literal"><span class="pre">hotshot</span></tt></a> was an experimental C module that focused on minimizing the overhead of profiling, at the expense of longer data post-processing times. It is no longer maintained and may be dropped in a future version of Python.</p> <p class="versionchanged"> <span class="versionmodified">Changed in version 2.5: </span>The results should be more meaningful than in the past: the timing core contained a critical bug.</p> </li> </ol> <p>The <a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a> and <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a> modules export the same interface, so they are mostly interchangeable; <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a> has a much lower overhead but is newer and might not be available on all systems. <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a> is really a compatibility layer on top of the internal <tt class="xref py py-mod docutils literal"><span class="pre">_lsprof</span></tt> module. The <a class="reference internal" href="hotshot.html#module-hotshot" title="hotshot: High performance logging profiler, mostly written in C."><tt class="xref py py-mod docutils literal"><span class="pre">hotshot</span></tt></a> module is reserved for specialized usage.</p> <div class="admonition note"> <p class="first admonition-title">Note</p> <p class="last">The profiler modules are designed to provide an execution profile for a given program, not for benchmarking purposes (for that, there is <a class="reference internal" href="timeit.html#module-timeit" title="timeit: Measure the execution time of small code snippets."><tt class="xref py py-mod docutils literal"><span class="pre">timeit</span></tt></a> for reasonably accurate results). This particularly applies to benchmarking Python code against C code: the profilers introduce overhead for Python code, but not for C-level functions, and so the C code would seem faster than any Python one.</p> </div> </div> <div class="section" id="instant-user-s-manual"> <span id="profile-instant"></span><h2>26.4.2. Instant User’s Manual<a class="headerlink" href="#instant-user-s-manual" title="Permalink to this headline">¶</a></h2> <p>This section is provided for users that “don’t want to read the manual.” It provides a very brief overview, and allows a user to rapidly perform profiling on an existing application.</p> <p>To profile a function that takes a single argument, you can do:</p> <div class="highlight-python"><div class="highlight"><pre><span class="kn">import</span> <span class="nn">cProfile</span> <span class="kn">import</span> <span class="nn">re</span> <span class="n">cProfile</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="s">'re.compile("foo|bar")'</span><span class="p">)</span> </pre></div> </div> <p>(Use <a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a> instead of <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a> if the latter is not available on your system.)</p> <p>The above action would run <a class="reference internal" href="re.html#re.compile" title="re.compile"><tt class="xref py py-func docutils literal"><span class="pre">re.compile()</span></tt></a> and print profile results like the following:</p> <div class="highlight-python"><pre> 197 function calls (192 primitive calls) in 0.002 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 0.001 0.001 <string>:1(<module>) 1 0.000 0.000 0.001 0.001 re.py:212(compile) 1 0.000 0.000 0.001 0.001 re.py:268(_compile) 1 0.000 0.000 0.000 0.000 sre_compile.py:172(_compile_charset) 1 0.000 0.000 0.000 0.000 sre_compile.py:201(_optimize_charset) 4 0.000 0.000 0.000 0.000 sre_compile.py:25(_identityfunction) 3/1 0.000 0.000 0.000 0.000 sre_compile.py:33(_compile)</pre> </div> <p>The first line indicates that 197 calls were monitored. Of those calls, 192 were <em class="dfn">primitive</em>, meaning that the call was not induced via recursion. The next line: <tt class="docutils literal"><span class="pre">Ordered</span> <span class="pre">by:</span> <span class="pre">standard</span> <span class="pre">name</span></tt>, indicates that the text string in the far right column was used to sort the output. The column headings include:</p> <dl class="docutils"> <dt>ncalls</dt> <dd>for the number of calls,</dd> <dt>tottime</dt> <dd>for the total time spent in the given function (and excluding time made in calls to sub-functions)</dd> <dt>percall</dt> <dd>is the quotient of <tt class="docutils literal"><span class="pre">tottime</span></tt> divided by <tt class="docutils literal"><span class="pre">ncalls</span></tt></dd> <dt>cumtime</dt> <dd>is the cumulative time spent in this and all subfunctions (from invocation till exit). This figure is accurate <em>even</em> for recursive functions.</dd> <dt>percall</dt> <dd>is the quotient of <tt class="docutils literal"><span class="pre">cumtime</span></tt> divided by primitive calls</dd> <dt>filename:lineno(function)</dt> <dd>provides the respective data of each function</dd> </dl> <p>When there are two numbers in the first column (for example <tt class="docutils literal"><span class="pre">3/1</span></tt>), it means that the function recursed. The second value is the number of primitive calls and the former is the total number of calls. Note that when the function does not recurse, these two values are the same, and only the single figure is printed.</p> <p>Instead of printing the output at the end of the profile run, you can save the results to a file by specifying a filename to the <tt class="xref py py-func docutils literal"><span class="pre">run()</span></tt> function:</p> <div class="highlight-python"><div class="highlight"><pre><span class="kn">import</span> <span class="nn">cProfile</span> <span class="kn">import</span> <span class="nn">re</span> <span class="n">cProfile</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="s">'re.compile("foo|bar")'</span><span class="p">,</span> <span class="s">'restats'</span><span class="p">)</span> </pre></div> </div> <p>The <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">pstats.Stats</span></tt></a> class reads profile results from a file and formats them in various ways.</p> <p>The file <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a> can also be invoked as a script to profile another script. For example:</p> <div class="highlight-python"><pre>python -m cProfile [-o output_file] [-s sort_order] myscript.py</pre> </div> <p><tt class="docutils literal"><span class="pre">-o</span></tt> writes the profile results to a file instead of to stdout</p> <p><tt class="docutils literal"><span class="pre">-s</span></tt> specifies one of the <a class="reference internal" href="#pstats.Stats.sort_stats" title="pstats.Stats.sort_stats"><tt class="xref py py-func docutils literal"><span class="pre">sort_stats()</span></tt></a> sort values to sort the output by. This only applies when <tt class="docutils literal"><span class="pre">-o</span></tt> is not supplied.</p> <p>The <a class="reference internal" href="#module-pstats" title="pstats: Statistics object for use with the profiler."><tt class="xref py py-mod docutils literal"><span class="pre">pstats</span></tt></a> module’s <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> class has a variety of methods for manipulating and printing the data saved into a profile results file:</p> <div class="highlight-python"><div class="highlight"><pre><span class="kn">import</span> <span class="nn">pstats</span> <span class="n">p</span> <span class="o">=</span> <span class="n">pstats</span><span class="o">.</span><span class="n">Stats</span><span class="p">(</span><span class="s">'restats'</span><span class="p">)</span> <span class="n">p</span><span class="o">.</span><span class="n">strip_dirs</span><span class="p">()</span><span class="o">.</span><span class="n">sort_stats</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">print_stats</span><span class="p">()</span> </pre></div> </div> <p>The <a class="reference internal" href="#pstats.Stats.strip_dirs" title="pstats.Stats.strip_dirs"><tt class="xref py py-meth docutils literal"><span class="pre">strip_dirs()</span></tt></a> method removed the extraneous path from all the module names. The <a class="reference internal" href="#pstats.Stats.sort_stats" title="pstats.Stats.sort_stats"><tt class="xref py py-meth docutils literal"><span class="pre">sort_stats()</span></tt></a> method sorted all the entries according to the standard module/line/name string that is printed. The <a class="reference internal" href="#pstats.Stats.print_stats" title="pstats.Stats.print_stats"><tt class="xref py py-meth docutils literal"><span class="pre">print_stats()</span></tt></a> method printed out all the statistics. You might try the following sort calls:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">p</span><span class="o">.</span><span class="n">sort_stats</span><span class="p">(</span><span class="s">'name'</span><span class="p">)</span> <span class="n">p</span><span class="o">.</span><span class="n">print_stats</span><span class="p">()</span> </pre></div> </div> <p>The first call will actually sort the list by function name, and the second call will print out the statistics. The following are some interesting calls to experiment with:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">p</span><span class="o">.</span><span class="n">sort_stats</span><span class="p">(</span><span class="s">'cumulative'</span><span class="p">)</span><span class="o">.</span><span class="n">print_stats</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span> </pre></div> </div> <p>This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you want to understand what algorithms are taking time, the above line is what you would use.</p> <p>If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">p</span><span class="o">.</span><span class="n">sort_stats</span><span class="p">(</span><span class="s">'time'</span><span class="p">)</span><span class="o">.</span><span class="n">print_stats</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span> </pre></div> </div> <p>to sort according to time spent within each function, and then print the statistics for the top ten functions.</p> <p>You might also try:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">p</span><span class="o">.</span><span class="n">sort_stats</span><span class="p">(</span><span class="s">'file'</span><span class="p">)</span><span class="o">.</span><span class="n">print_stats</span><span class="p">(</span><span class="s">'__init__'</span><span class="p">)</span> </pre></div> </div> <p>This will sort all the statistics by file name, and then print out statistics for only the class init methods (since they are spelled with <tt class="docutils literal"><span class="pre">__init__</span></tt> in them). As one final example, you could try:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">p</span><span class="o">.</span><span class="n">sort_stats</span><span class="p">(</span><span class="s">'time'</span><span class="p">,</span> <span class="s">'cum'</span><span class="p">)</span><span class="o">.</span><span class="n">print_stats</span><span class="p">(</span><span class="o">.</span><span class="mi">5</span><span class="p">,</span> <span class="s">'init'</span><span class="p">)</span> </pre></div> </div> <p>This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out some of the statistics. To be specific, the list is first culled down to 50% (re: <tt class="docutils literal"><span class="pre">.5</span></tt>) of its original size, then only lines containing <tt class="docutils literal"><span class="pre">init</span></tt> are maintained, and that sub-sub-list is printed.</p> <p>If you wondered what functions called the above functions, you could now (<tt class="docutils literal"><span class="pre">p</span></tt> is still sorted according to the last criteria) do:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">p</span><span class="o">.</span><span class="n">print_callers</span><span class="p">(</span><span class="o">.</span><span class="mi">5</span><span class="p">,</span> <span class="s">'init'</span><span class="p">)</span> </pre></div> </div> <p>and you would get a list of callers for each of the listed functions.</p> <p>If you want more functionality, you’re going to have to read the manual, or guess what the following functions do:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">p</span><span class="o">.</span><span class="n">print_callees</span><span class="p">()</span> <span class="n">p</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s">'restats'</span><span class="p">)</span> </pre></div> </div> <p>Invoked as a script, the <a class="reference internal" href="#module-pstats" title="pstats: Statistics object for use with the profiler."><tt class="xref py py-mod docutils literal"><span class="pre">pstats</span></tt></a> module is a statistics browser for reading and examining profile dumps. It has a simple line-oriented interface (implemented using <a class="reference internal" href="cmd.html#module-cmd" title="cmd: Build line-oriented command interpreters."><tt class="xref py py-mod docutils literal"><span class="pre">cmd</span></tt></a>) and interactive help.</p> </div> <div class="section" id="module-cProfile"> <span id="profile-and-cprofile-module-reference"></span><h2>26.4.3. <a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a> and <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a> Module Reference<a class="headerlink" href="#module-cProfile" title="Permalink to this headline">¶</a></h2> <span class="target" id="module-profile"></span><p>Both the <a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a> and <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a> modules provide the following functions:</p> <dl class="function"> <dt id="profile.run"> <tt class="descclassname">profile.</tt><tt class="descname">run</tt><big>(</big><em>command</em>, <em>filename=None</em>, <em>sort=-1</em><big>)</big><a class="headerlink" href="#profile.run" title="Permalink to this definition">¶</a></dt> <dd><p>This function takes a single argument that can be passed to the <tt class="xref py py-func docutils literal"><span class="pre">exec()</span></tt> function, and an optional file name. In all cases this routine executes:</p> <div class="highlight-python"><div class="highlight"><pre><span class="k">exec</span><span class="p">(</span><span class="n">command</span><span class="p">,</span> <span class="n">__main__</span><span class="o">.</span><span class="n">__dict__</span><span class="p">,</span> <span class="n">__main__</span><span class="o">.</span><span class="n">__dict__</span><span class="p">)</span> </pre></div> </div> <p>and gathers profiling statistics from the execution. If no file name is present, then this function automatically creates a <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> instance and prints a simple profiling report. If the sort value is specified it is passed to this <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> instance to control how the results are sorted.</p> </dd></dl> <dl class="function"> <dt id="profile.runctx"> <tt class="descclassname">profile.</tt><tt class="descname">runctx</tt><big>(</big><em>command</em>, <em>globals</em>, <em>locals</em>, <em>filename=None</em><big>)</big><a class="headerlink" href="#profile.runctx" title="Permalink to this definition">¶</a></dt> <dd><p>This function is similar to <a class="reference internal" href="#profile.run" title="profile.run"><tt class="xref py py-func docutils literal"><span class="pre">run()</span></tt></a>, with added arguments to supply the globals and locals dictionaries for the <em>command</em> string. This routine executes:</p> <div class="highlight-python"><div class="highlight"><pre><span class="k">exec</span><span class="p">(</span><span class="n">command</span><span class="p">,</span> <span class="nb">globals</span><span class="p">,</span> <span class="nb">locals</span><span class="p">)</span> </pre></div> </div> <p>and gathers profiling statistics as in the <a class="reference internal" href="#profile.run" title="profile.run"><tt class="xref py py-func docutils literal"><span class="pre">run()</span></tt></a> function above.</p> </dd></dl> <dl class="class"> <dt id="profile.Profile"> <em class="property">class </em><tt class="descclassname">profile.</tt><tt class="descname">Profile</tt><big>(</big><em>timer=None</em>, <em>timeunit=0.0</em>, <em>subcalls=True</em>, <em>builtins=True</em><big>)</big><a class="headerlink" href="#profile.Profile" title="Permalink to this definition">¶</a></dt> <dd><p>This class is normally only used if more precise control over profiling is needed than what the <tt class="xref py py-func docutils literal"><span class="pre">cProfile.run()</span></tt> function provides.</p> <p>A custom timer can be supplied for measuring how long code takes to run via the <em>timer</em> argument. This must be a function that returns a single number representing the current time. If the number is an integer, the <em>timeunit</em> specifies a multiplier that specifies the duration of each unit of time. For example, if the timer returns times measured in thousands of seconds, the time unit would be <tt class="docutils literal"><span class="pre">.001</span></tt>.</p> <p>Directly using the <a class="reference internal" href="#profile.Profile" title="profile.Profile"><tt class="xref py py-class docutils literal"><span class="pre">Profile</span></tt></a> class allows formatting profile results without writing the profile data to a file:</p> <div class="highlight-python"><div class="highlight"><pre><span class="kn">import</span> <span class="nn">cProfile</span><span class="o">,</span> <span class="nn">pstats</span><span class="o">,</span> <span class="nn">io</span> <span class="n">pr</span> <span class="o">=</span> <span class="n">cProfile</span><span class="o">.</span><span class="n">Profile</span><span class="p">()</span> <span class="n">pr</span><span class="o">.</span><span class="n">enable</span><span class="p">()</span> <span class="o">...</span> <span class="n">do</span> <span class="n">something</span> <span class="o">...</span> <span class="n">pr</span><span class="o">.</span><span class="n">disable</span><span class="p">()</span> <span class="n">s</span> <span class="o">=</span> <span class="n">io</span><span class="o">.</span><span class="n">StringIO</span><span class="p">()</span> <span class="n">ps</span> <span class="o">=</span> <span class="n">pstats</span><span class="o">.</span><span class="n">Stats</span><span class="p">(</span><span class="n">pr</span><span class="p">,</span> <span class="n">stream</span><span class="o">=</span><span class="n">s</span><span class="p">)</span> <span class="n">ps</span><span class="o">.</span><span class="n">print_results</span><span class="p">()</span> </pre></div> </div> <dl class="method"> <dt id="profile.Profile.enable"> <tt class="descname">enable</tt><big>(</big><big>)</big><a class="headerlink" href="#profile.Profile.enable" title="Permalink to this definition">¶</a></dt> <dd><p>Start collecting profiling data.</p> </dd></dl> <dl class="method"> <dt id="profile.Profile.disable"> <tt class="descname">disable</tt><big>(</big><big>)</big><a class="headerlink" href="#profile.Profile.disable" title="Permalink to this definition">¶</a></dt> <dd><p>Stop collecting profiling data.</p> </dd></dl> <dl class="method"> <dt id="profile.Profile.create_stats"> <tt class="descname">create_stats</tt><big>(</big><big>)</big><a class="headerlink" href="#profile.Profile.create_stats" title="Permalink to this definition">¶</a></dt> <dd><p>Stop collecting profiling data and record the results internally as the current profile.</p> </dd></dl> <dl class="method"> <dt id="profile.Profile.print_stats"> <tt class="descname">print_stats</tt><big>(</big><em>sort=-1</em><big>)</big><a class="headerlink" href="#profile.Profile.print_stats" title="Permalink to this definition">¶</a></dt> <dd><p>Create a <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> object based on the current profile and print the results to stdout.</p> </dd></dl> <dl class="method"> <dt id="profile.Profile.dump_stats"> <tt class="descname">dump_stats</tt><big>(</big><em>filename</em><big>)</big><a class="headerlink" href="#profile.Profile.dump_stats" title="Permalink to this definition">¶</a></dt> <dd><p>Write the results of the current profile to <em>filename</em>.</p> </dd></dl> <dl class="method"> <dt id="profile.Profile.run"> <tt class="descname">run</tt><big>(</big><em>cmd</em><big>)</big><a class="headerlink" href="#profile.Profile.run" title="Permalink to this definition">¶</a></dt> <dd><p>Profile the cmd via <tt class="xref py py-func docutils literal"><span class="pre">exec()</span></tt>.</p> </dd></dl> <dl class="method"> <dt id="profile.Profile.runctx"> <tt class="descname">runctx</tt><big>(</big><em>cmd</em>, <em>globals</em>, <em>locals</em><big>)</big><a class="headerlink" href="#profile.Profile.runctx" title="Permalink to this definition">¶</a></dt> <dd><p>Profile the cmd via <tt class="xref py py-func docutils literal"><span class="pre">exec()</span></tt> with the specified global and local environment.</p> </dd></dl> <dl class="method"> <dt id="profile.Profile.runcall"> <tt class="descname">runcall</tt><big>(</big><em>func</em>, <em>*args</em>, <em>**kwargs</em><big>)</big><a class="headerlink" href="#profile.Profile.runcall" title="Permalink to this definition">¶</a></dt> <dd><p>Profile <tt class="docutils literal"><span class="pre">func(*args,</span> <span class="pre">**kwargs)</span></tt></p> </dd></dl> </dd></dl> </div> <div class="section" id="the-stats-class"> <span id="profile-stats"></span><h2>26.4.4. The <tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt> Class<a class="headerlink" href="#the-stats-class" title="Permalink to this headline">¶</a></h2> <p>Analysis of the profiler data is done using the <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> class.</p> <span class="target" id="module-pstats"></span><dl class="class"> <dt id="pstats.Stats"> <em class="property">class </em><tt class="descclassname">pstats.</tt><tt class="descname">Stats</tt><big>(</big><em>*filenames or profile</em>, <em>stream=sys.stdout</em><big>)</big><a class="headerlink" href="#pstats.Stats" title="Permalink to this definition">¶</a></dt> <dd><p>This class constructor creates an instance of a “statistics object” from a <em>filename</em> (or list of filenames) or from a <tt class="xref py py-class docutils literal"><span class="pre">Profile</span></tt> instance. Output will be printed to the stream specified by <em>stream</em>.</p> <p>The file selected by the above constructor must have been created by the corresponding version of <a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a> or <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a>. To be specific, there is <em>no</em> file compatibility guaranteed with future versions of this profiler, and there is no compatibility with files produced by other profilers. If several files are provided, all the statistics for identical functions will be coalesced, so that an overall view of several processes can be considered in a single report. If additional files need to be combined with data in an existing <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> object, the <a class="reference internal" href="#pstats.Stats.add" title="pstats.Stats.add"><tt class="xref py py-meth docutils literal"><span class="pre">add()</span></tt></a> method can be used.</p> <p>Instead of reading the profile data from a file, a <tt class="xref py py-class docutils literal"><span class="pre">cProfile.Profile</span></tt> or <a class="reference internal" href="#profile.Profile" title="profile.Profile"><tt class="xref py py-class docutils literal"><span class="pre">profile.Profile</span></tt></a> object can be used as the profile data source.</p> <p><a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> objects have the following methods:</p> <dl class="method"> <dt id="pstats.Stats.strip_dirs"> <tt class="descname">strip_dirs</tt><big>(</big><big>)</big><a class="headerlink" href="#pstats.Stats.strip_dirs" title="Permalink to this definition">¶</a></dt> <dd><p>This method for the <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> class removes all leading path information from file names. It is very useful in reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the stripped information is lost. After performing a strip operation, the object is considered to have its entries in a “random” order, as it was just after object initialization and loading. If <a class="reference internal" href="#pstats.Stats.strip_dirs" title="pstats.Stats.strip_dirs"><tt class="xref py py-meth docutils literal"><span class="pre">strip_dirs()</span></tt></a> causes two function names to be indistinguishable (they are on the same line of the same filename, and have the same function name), then the statistics for these two entries are accumulated into a single entry.</p> </dd></dl> <dl class="method"> <dt id="pstats.Stats.add"> <tt class="descname">add</tt><big>(</big><em>*filenames</em><big>)</big><a class="headerlink" href="#pstats.Stats.add" title="Permalink to this definition">¶</a></dt> <dd><p>This method of the <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> class accumulates additional profiling information into the current profiling object. Its arguments should refer to filenames created by the corresponding version of <a class="reference internal" href="#profile.run" title="profile.run"><tt class="xref py py-func docutils literal"><span class="pre">profile.run()</span></tt></a> or <tt class="xref py py-func docutils literal"><span class="pre">cProfile.run()</span></tt>. Statistics for identically named (re: file, line, name) functions are automatically accumulated into single function statistics.</p> </dd></dl> <dl class="method"> <dt id="pstats.Stats.dump_stats"> <tt class="descname">dump_stats</tt><big>(</big><em>filename</em><big>)</big><a class="headerlink" href="#pstats.Stats.dump_stats" title="Permalink to this definition">¶</a></dt> <dd><p>Save the data loaded into the <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> object to a file named <em>filename</em>. The file is created if it does not exist, and is overwritten if it already exists. This is equivalent to the method of the same name on the <a class="reference internal" href="#profile.Profile" title="profile.Profile"><tt class="xref py py-class docutils literal"><span class="pre">profile.Profile</span></tt></a> and <tt class="xref py py-class docutils literal"><span class="pre">cProfile.Profile</span></tt> classes.</p> </dd></dl> <p class="versionadded"> <span class="versionmodified">New in version 2.3.</span></p> <dl class="method"> <dt id="pstats.Stats.sort_stats"> <tt class="descname">sort_stats</tt><big>(</big><em>*keys</em><big>)</big><a class="headerlink" href="#pstats.Stats.sort_stats" title="Permalink to this definition">¶</a></dt> <dd><p>This method modifies the <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> object by sorting it according to the supplied criteria. The argument is typically a string identifying the basis of a sort (example: <tt class="docutils literal"><span class="pre">'time'</span></tt> or <tt class="docutils literal"><span class="pre">'name'</span></tt>).</p> <p>When more than one key is provided, then additional keys are used as secondary criteria when there is equality in all keys selected before them. For example, <tt class="docutils literal"><span class="pre">sort_stats('name',</span> <span class="pre">'file')</span></tt> will sort all the entries according to their function name, and resolve all ties (identical function names) by sorting by file name.</p> <p>Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are the keys currently defined:</p> <table border="1" class="docutils"> <colgroup> <col width="45%" /> <col width="55%" /> </colgroup> <thead valign="bottom"> <tr class="row-odd"><th class="head">Valid Arg</th> <th class="head">Meaning</th> </tr> </thead> <tbody valign="top"> <tr class="row-even"><td><tt class="docutils literal"><span class="pre">'calls'</span></tt></td> <td>call count</td> </tr> <tr class="row-odd"><td><tt class="docutils literal"><span class="pre">'cumulative'</span></tt></td> <td>cumulative time</td> </tr> <tr class="row-even"><td><tt class="docutils literal"><span class="pre">'cumtime'</span></tt></td> <td>cumulative time</td> </tr> <tr class="row-odd"><td><tt class="docutils literal"><span class="pre">'file'</span></tt></td> <td>file name</td> </tr> <tr class="row-even"><td><tt class="docutils literal"><span class="pre">'filename'</span></tt></td> <td>file name</td> </tr> <tr class="row-odd"><td><tt class="docutils literal"><span class="pre">'module'</span></tt></td> <td>file name</td> </tr> <tr class="row-even"><td><tt class="docutils literal"><span class="pre">'ncalls'</span></tt></td> <td>call count</td> </tr> <tr class="row-odd"><td><tt class="docutils literal"><span class="pre">'pcalls'</span></tt></td> <td>primitive call count</td> </tr> <tr class="row-even"><td><tt class="docutils literal"><span class="pre">'line'</span></tt></td> <td>line number</td> </tr> <tr class="row-odd"><td><tt class="docutils literal"><span class="pre">'name'</span></tt></td> <td>function name</td> </tr> <tr class="row-even"><td><tt class="docutils literal"><span class="pre">'nfl'</span></tt></td> <td>name/file/line</td> </tr> <tr class="row-odd"><td><tt class="docutils literal"><span class="pre">'stdname'</span></tt></td> <td>standard name</td> </tr> <tr class="row-even"><td><tt class="docutils literal"><span class="pre">'time'</span></tt></td> <td>internal time</td> </tr> <tr class="row-odd"><td><tt class="docutils literal"><span class="pre">'tottime'</span></tt></td> <td>internal time</td> </tr> </tbody> </table> <p>Note that all sorts on statistics are in descending order (placing most time consuming items first), where as name, file, and line number searches are in ascending order (alphabetical). The subtle distinction between <tt class="docutils literal"><span class="pre">'nfl'</span></tt> and <tt class="docutils literal"><span class="pre">'stdname'</span></tt> is that the standard name is a sort of the name as printed, which means that the embedded line numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same) appear in the string order 20, 3 and 40. In contrast, <tt class="docutils literal"><span class="pre">'nfl'</span></tt> does a numeric compare of the line numbers. In fact, <tt class="docutils literal"><span class="pre">sort_stats('nfl')</span></tt> is the same as <tt class="docutils literal"><span class="pre">sort_stats('name',</span> <span class="pre">'file',</span> <span class="pre">'line')</span></tt>.</p> <p>For backward-compatibility reasons, the numeric arguments <tt class="docutils literal"><span class="pre">-1</span></tt>, <tt class="docutils literal"><span class="pre">0</span></tt>, <tt class="docutils literal"><span class="pre">1</span></tt>, and <tt class="docutils literal"><span class="pre">2</span></tt> are permitted. They are interpreted as <tt class="docutils literal"><span class="pre">'stdname'</span></tt>, <tt class="docutils literal"><span class="pre">'calls'</span></tt>, <tt class="docutils literal"><span class="pre">'time'</span></tt>, and <tt class="docutils literal"><span class="pre">'cumulative'</span></tt> respectively. If this old style format (numeric) is used, only one sort key (the numeric key) will be used, and additional arguments will be silently ignored.</p> </dd></dl> <dl class="method"> <dt id="pstats.Stats.reverse_order"> <tt class="descname">reverse_order</tt><big>(</big><big>)</big><a class="headerlink" href="#pstats.Stats.reverse_order" title="Permalink to this definition">¶</a></dt> <dd><p>This method for the <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> class reverses the ordering of the basic list within the object. Note that by default ascending vs descending order is properly selected based on the sort key of choice.</p> </dd></dl> <dl class="method"> <dt id="pstats.Stats.print_stats"> <tt class="descname">print_stats</tt><big>(</big><em>*restrictions</em><big>)</big><a class="headerlink" href="#pstats.Stats.print_stats" title="Permalink to this definition">¶</a></dt> <dd><p>This method for the <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> class prints out a report as described in the <a class="reference internal" href="#profile.run" title="profile.run"><tt class="xref py py-func docutils literal"><span class="pre">profile.run()</span></tt></a> definition.</p> <p>The order of the printing is based on the last <a class="reference internal" href="#pstats.Stats.sort_stats" title="pstats.Stats.sort_stats"><tt class="xref py py-meth docutils literal"><span class="pre">sort_stats()</span></tt></a> operation done on the object (subject to caveats in <a class="reference internal" href="#pstats.Stats.add" title="pstats.Stats.add"><tt class="xref py py-meth docutils literal"><span class="pre">add()</span></tt></a> and <a class="reference internal" href="#pstats.Stats.strip_dirs" title="pstats.Stats.strip_dirs"><tt class="xref py py-meth docutils literal"><span class="pre">strip_dirs()</span></tt></a>).</p> <p>The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list is taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular expression (to pattern match the standard name that is printed. If several restrictions are provided, then they are applied sequentially. For example:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">print_stats</span><span class="p">(</span><span class="o">.</span><span class="mi">1</span><span class="p">,</span> <span class="s">'foo:'</span><span class="p">)</span> </pre></div> </div> <p>would first limit the printing to first 10% of list, and then only print functions that were part of filename <tt class="file docutils literal"><span class="pre">.*foo:</span></tt>. In contrast, the command:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">print_stats</span><span class="p">(</span><span class="s">'foo:'</span><span class="p">,</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span> </pre></div> </div> <p>would limit the list to all functions having file names <tt class="file docutils literal"><span class="pre">.*foo:</span></tt>, and then proceed to only print the first 10% of them.</p> </dd></dl> <dl class="method"> <dt id="pstats.Stats.print_callers"> <tt class="descname">print_callers</tt><big>(</big><em>*restrictions</em><big>)</big><a class="headerlink" href="#pstats.Stats.print_callers" title="Permalink to this definition">¶</a></dt> <dd><p>This method for the <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> class prints a list of all functions that called each function in the profiled database. The ordering is identical to that provided by <a class="reference internal" href="#pstats.Stats.print_stats" title="pstats.Stats.print_stats"><tt class="xref py py-meth docutils literal"><span class="pre">print_stats()</span></tt></a>, and the definition of the restricting argument is also identical. Each caller is reported on its own line. The format differs slightly depending on the profiler that produced the stats:</p> <ul class="simple"> <li>With <a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a>, a number is shown in parentheses after each caller to show how many times this specific call was made. For convenience, a second non-parenthesized number repeats the cumulative time spent in the function at the right.</li> <li>With <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a>, each caller is preceded by three numbers: the number of times this specific call was made, and the total and cumulative times spent in the current function while it was invoked by this specific caller.</li> </ul> </dd></dl> <dl class="method"> <dt id="pstats.Stats.print_callees"> <tt class="descname">print_callees</tt><big>(</big><em>*restrictions</em><big>)</big><a class="headerlink" href="#pstats.Stats.print_callees" title="Permalink to this definition">¶</a></dt> <dd><p>This method for the <a class="reference internal" href="#pstats.Stats" title="pstats.Stats"><tt class="xref py py-class docutils literal"><span class="pre">Stats</span></tt></a> class prints a list of all function that were called by the indicated function. Aside from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are identical to the <a class="reference internal" href="#pstats.Stats.print_callers" title="pstats.Stats.print_callers"><tt class="xref py py-meth docutils literal"><span class="pre">print_callers()</span></tt></a> method.</p> </dd></dl> </dd></dl> </div> <div class="section" id="what-is-deterministic-profiling"> <span id="deterministic-profiling"></span><h2>26.4.5. What Is Deterministic Profiling?<a class="headerlink" href="#what-is-deterministic-profiling" title="Permalink to this headline">¶</a></h2> <p><em class="dfn">Deterministic profiling</em> is meant to reflect the fact that all <em>function call</em>, <em>function return</em>, and <em>exception</em> events are monitored, and precise timings are made for the intervals between these events (during which time the user’s code is executing). In contrast, <em class="dfn">statistical profiling</em> (which is not done by this module) randomly samples the effective instruction pointer, and deduces where time is being spent. The latter technique traditionally involves less overhead (as the code does not need to be instrumented), but provides only relative indications of where time is being spent.</p> <p>In Python, since there is an interpreter active during execution, the presence of instrumented code is not required to do deterministic profiling. Python automatically provides a <em class="dfn">hook</em> (optional callback) for each event. In addition, the interpreted nature of Python tends to add so much overhead to execution, that deterministic profiling tends to only add small processing overhead in typical applications. The result is that deterministic profiling is not that expensive, yet provides extensive run time statistics about the execution of a Python program.</p> <p>Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-expansion points (high call counts). Internal time statistics can be used to identify “hot loops” that should be carefully optimized. Cumulative time statistics should be used to identify high level errors in the selection of algorithms. Note that the unusual handling of cumulative times in this profiler allows statistics for recursive implementations of algorithms to be directly compared to iterative implementations.</p> </div> <div class="section" id="limitations"> <span id="profile-limitations"></span><h2>26.4.6. Limitations<a class="headerlink" href="#limitations" title="Permalink to this headline">¶</a></h2> <p>One limitation has to do with accuracy of timing information. There is a fundamental problem with deterministic profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at a rate (typically) of about .001 seconds. Hence no measurements will be more accurate than the underlying clock. If enough measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first error induces a second source of error.</p> <p>The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to get the time actually <em>gets</em> the state of the clock. Similarly, there is a certain lag when exiting the profiler event handler from the time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again executing. As a result, functions that are called many times, or call many functions, will typically accumulate this error. The error that accumulates in this fashion is typically less than the accuracy of the clock (less than one clock tick), but it <em>can</em> accumulate and become very significant.</p> <p>The problem is more important with <a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a> than with the lower-overhead <a class="reference internal" href="#module-cProfile" title="cProfile"><tt class="xref py py-mod docutils literal"><span class="pre">cProfile</span></tt></a>. For this reason, <a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a> provides a means of calibrating itself for a given platform so that this error can be probabilistically (on the average) removed. After the profiler is calibrated, it will be more accurate (in a least square sense), but it will sometimes produce negative numbers (when call counts are exceptionally low, and the gods of probability work against you :-). ) Do <em>not</em> be alarmed by negative numbers in the profile. They should <em>only</em> appear if you have calibrated your profiler, and the results are actually better than without calibration.</p> </div> <div class="section" id="calibration"> <span id="profile-calibration"></span><h2>26.4.7. Calibration<a class="headerlink" href="#calibration" title="Permalink to this headline">¶</a></h2> <p>The profiler of the <a class="reference internal" href="#module-profile" title="profile: Python source profiler."><tt class="xref py py-mod docutils literal"><span class="pre">profile</span></tt></a> module subtracts a constant from each event handling time to compensate for the overhead of calling the time function, and socking away the results. By default, the constant is 0. The following procedure can be used to obtain a better constant for a given platform (see <a class="reference internal" href="#profile-limitations"><em>Limitations</em></a>).</p> <div class="highlight-python"><div class="highlight"><pre><span class="kn">import</span> <span class="nn">profile</span> <span class="n">pr</span> <span class="o">=</span> <span class="n">profile</span><span class="o">.</span><span class="n">Profile</span><span class="p">()</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">5</span><span class="p">):</span> <span class="k">print</span> <span class="n">pr</span><span class="o">.</span><span class="n">calibrate</span><span class="p">(</span><span class="mi">10000</span><span class="p">)</span> </pre></div> </div> <p>The method executes the number of Python calls given by the argument, directly and again under the profiler, measuring the time for both. It then computes the hidden overhead per profiler event, and returns that as a float. For example, on a 1.8Ghz Intel Core i5 running Mac OS X, and using Python’s time.clock() as the timer, the magical number is about 4.04e-6.</p> <p>The object of this exercise is to get a fairly consistent result. If your computer is <em>very</em> fast, or your timer function has poor resolution, you might have to pass 100000, or even 1000000, to get consistent results.</p> <p>When you have a consistent answer, there are three ways you can use it: <a class="footnote-reference" href="#id2" id="id1">[1]</a></p> <div class="highlight-python"><div class="highlight"><pre><span class="kn">import</span> <span class="nn">profile</span> <span class="c"># 1. Apply computed bias to all Profile instances created hereafter.</span> <span class="n">profile</span><span class="o">.</span><span class="n">Profile</span><span class="o">.</span><span class="n">bias</span> <span class="o">=</span> <span class="n">your_computed_bias</span> <span class="c"># 2. Apply computed bias to a specific Profile instance.</span> <span class="n">pr</span> <span class="o">=</span> <span class="n">profile</span><span class="o">.</span><span class="n">Profile</span><span class="p">()</span> <span class="n">pr</span><span class="o">.</span><span class="n">bias</span> <span class="o">=</span> <span class="n">your_computed_bias</span> <span class="c"># 3. Specify computed bias in instance constructor.</span> <span class="n">pr</span> <span class="o">=</span> <span class="n">profile</span><span class="o">.</span><span class="n">Profile</span><span class="p">(</span><span class="n">bias</span><span class="o">=</span><span class="n">your_computed_bias</span><span class="p">)</span> </pre></div> </div> <p>If you have a choice, you are better off choosing a smaller constant, and then your results will “less often” show up as negative in profile statistics.</p> </div> <div class="section" id="using-a-customer-timer"> <span id="profile-timers"></span><h2>26.4.8. Using a customer timer<a class="headerlink" href="#using-a-customer-timer" title="Permalink to this headline">¶</a></h2> <p>If you want to change how current time is determined (for example, to force use of wall-clock time or elapsed process time), pass the timing function you want to the <tt class="xref py py-class docutils literal"><span class="pre">Profile</span></tt> class constructor:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">pr</span> <span class="o">=</span> <span class="n">profile</span><span class="o">.</span><span class="n">Profile</span><span class="p">(</span><span class="n">your_time_func</span><span class="p">)</span> </pre></div> </div> <p>The resulting profiler will then call <tt class="docutils literal"><span class="pre">your_time_func</span></tt>. Depending on whether you are using <a class="reference internal" href="#profile.Profile" title="profile.Profile"><tt class="xref py py-class docutils literal"><span class="pre">profile.Profile</span></tt></a> or <tt class="xref py py-class docutils literal"><span class="pre">cProfile.Profile</span></tt>, <tt class="docutils literal"><span class="pre">your_time_func</span></tt>‘s return value will be interpreted differently:</p> <dl class="docutils"> <dt><a class="reference internal" href="#profile.Profile" title="profile.Profile"><tt class="xref py py-class docutils literal"><span class="pre">profile.Profile</span></tt></a></dt> <dd><p class="first"><tt class="docutils literal"><span class="pre">your_time_func</span></tt> should return a single number, or a list of numbers whose sum is the current time (like what <a class="reference internal" href="os.html#os.times" title="os.times"><tt class="xref py py-func docutils literal"><span class="pre">os.times()</span></tt></a> returns). If the function returns a single time number, or the list of returned numbers has length 2, then you will get an especially fast version of the dispatch routine.</p> <p class="last">Be warned that you should calibrate the profiler class for the timer function that you choose (see <a class="reference internal" href="#profile-calibration"><em>Calibration</em></a>). For most machines, a timer that returns a lone integer value will provide the best results in terms of low overhead during profiling. (<a class="reference internal" href="os.html#os.times" title="os.times"><tt class="xref py py-func docutils literal"><span class="pre">os.times()</span></tt></a> is <em>pretty</em> bad, as it returns a tuple of floating point values). If you want to substitute a better timer in the cleanest fashion, derive a class and hardwire a replacement dispatch method that best handles your timer call, along with the appropriate calibration constant.</p> </dd> <dt><tt class="xref py py-class docutils literal"><span class="pre">cProfile.Profile</span></tt></dt> <dd><p class="first"><tt class="docutils literal"><span class="pre">your_time_func</span></tt> should return a single number. If it returns integers, you can also invoke the class constructor with a second argument specifying the real duration of one unit of time. For example, if <tt class="docutils literal"><span class="pre">your_integer_time_func</span></tt> returns times measured in thousands of seconds, you would construct the <tt class="xref py py-class docutils literal"><span class="pre">Profile</span></tt> instance as follows:</p> <div class="highlight-python"><div class="highlight"><pre><span class="n">pr</span> <span class="o">=</span> <span class="n">cProfile</span><span class="o">.</span><span class="n">Profile</span><span class="p">(</span><span class="n">your_integer_time_func</span><span class="p">,</span> <span class="mf">0.001</span><span class="p">)</span> </pre></div> </div> <p class="last">As the <tt class="xref py py-mod docutils literal"><span class="pre">cProfile.Profile</span></tt> class cannot be calibrated, custom timer functions should be used with care and should be as fast as possible. For the best results with a custom timer, it might be necessary to hard-code it in the C source of the internal <tt class="xref py py-mod docutils literal"><span class="pre">_lsprof</span></tt> module.</p> </dd> </dl> <p class="rubric">Footnotes</p> <table class="docutils footnote" frame="void" id="id2" rules="none"> <colgroup><col class="label" /><col /></colgroup> <tbody valign="top"> <tr><td class="label"><a class="fn-backref" href="#id1">[1]</a></td><td>Prior to Python 2.2, it was necessary to edit the profiler source code to embed the bias as a literal number. You still can, but that method is no longer described, because no longer needed.</td></tr> </tbody> </table> </div> </div> </div> </div> </div> <div class="sphinxsidebar"> <div class="sphinxsidebarwrapper"> <h3><a href="../contents.html">Table Of Contents</a></h3> <ul> <li><a class="reference internal" href="#">26.4. The Python Profilers</a><ul> <li><a class="reference internal" href="#introduction-to-the-profilers">26.4.1. Introduction to the profilers</a></li> <li><a class="reference internal" href="#instant-user-s-manual">26.4.2. Instant User’s Manual</a></li> <li><a class="reference internal" href="#module-cProfile">26.4.3. <tt class="docutils literal"><span class="pre">profile</span></tt> and <tt class="docutils literal"><span class="pre">cProfile</span></tt> Module Reference</a></li> <li><a class="reference internal" href="#the-stats-class">26.4.4. The <tt class="docutils literal"><span class="pre">Stats</span></tt> Class</a></li> <li><a class="reference internal" href="#what-is-deterministic-profiling">26.4.5. What Is Deterministic Profiling?</a></li> <li><a class="reference internal" href="#limitations">26.4.6. Limitations</a></li> <li><a class="reference internal" href="#calibration">26.4.7. Calibration</a></li> <li><a class="reference internal" href="#using-a-customer-timer">26.4.8. Using a customer timer</a></li> </ul> </li> </ul> <h4>Previous topic</h4> <p class="topless"><a href="pdb.html" title="previous chapter">26.2. <tt class="docutils literal"><span class="pre">pdb</span></tt> — The Python Debugger</a></p> <h4>Next topic</h4> <p class="topless"><a href="hotshot.html" title="next chapter">26.5. <tt class="docutils literal"><span class="pre">hotshot</span></tt> — High performance logging profiler</a></p> <h3>This Page</h3> <ul class="this-page-menu"> <li><a href="../bugs.html">Report a Bug</a></li> <li><a href="../_sources/library/profile.txt" rel="nofollow">Show Source</a></li> </ul> <div id="searchbox" style="display: none"> <h3>Quick search</h3> <form class="search" action="../search.html" method="get"> <input type="text" name="q" /> <input type="submit" value="Go" /> <input type="hidden" name="check_keywords" value="yes" /> <input type="hidden" name="area" value="default" /> </form> <p class="searchtip" style="font-size: 90%"> Enter search terms or a module, class or function name. </p> </div> <script type="text/javascript">$('#searchbox').show(0);</script> </div> </div> <div class="clearer"></div> </div> <div class="related"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="../genindex.html" title="General Index" >index</a></li> <li class="right" > <a href="../py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="right" > <a href="hotshot.html" title="26.5. hotshot — High performance logging profiler" >next</a> |</li> <li class="right" > <a href="pdb.html" title="26.2. pdb — The Python Debugger" >previous</a> |</li> <li><img src="../_static/py.png" alt="" style="vertical-align: middle; margin-top: -1px"/></li> <li><a href="http://www.python.org/">Python</a> »</li> <li> <a href="../index.html">Python 2.7.5 documentation</a> » </li> <li><a href="index.html" >The Python Standard Library</a> »</li> <li><a href="debug.html" >26. Debugging and Profiling</a> »</li> </ul> </div> <div class="footer"> © <a href="../copyright.html">Copyright</a> 1990-2019, Python Software Foundation. <br /> The Python Software Foundation is a non-profit corporation. <a href="http://www.python.org/psf/donations/">Please donate.</a> <br /> Last updated on Jul 03, 2019. <a href="../bugs.html">Found a bug</a>? <br /> Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3. </div> </body> </html>